1,879 research outputs found

    Farmers' rights and protection of traditional agricultural knowledge:

    Get PDF
    "Although achieving in situ conservation is possible without changing farmers' customary management of crops as common pool resources, an alternative approach is to negotiate a bioprospecting contract with providers of the resource that involves direct payment and royalties. This bioprospecting mechanism implies a change in the customary treatment of crop genetic resources as common pool goods and is in line with national ownership mandated by the Convention on Biological Diversity (CBD). This paper questions the value of bioprospecting for protecting traditional agricultural knowledge and argues for a common pool approach. It examines the nature of crop genetic resources and farmers' knowledge about them, and it analyzes the nature of the ‘common heritage' regime that was partly dismantled by the Convention on Biological Diversity. The paper reviews the implementation of access and benefit sharing schemes under the CBD and discusses programs to recognize Farmers' Rights that have arisen since the establishment of the CBD. It concludes with recommendations for meeting the Farmers' Rights mandate of the International Treaty on Plant Genetic Resources for Food and Agriculture." Author's AbstractEast Africa, africa south of sahara, Biological diversity conservation, Collective action, Bioprospecting,

    Fluid/solid transition in a hard-core system

    Get PDF
    We prove that a system of particles in the plane, interacting only with a certain hard-core constraint, undergoes a fluid/solid phase transition

    Entrepreneurial capital, social values and Islamic traditions: exploring the growth of women-owned enterprises in Pakistan

    Get PDF
    Main ArticleThis study seeks to explore the variables contributing to the growth of women-owned enterprises in the Islamic Republic of Pakistan. Based on a previously established multivariate model, it uses two econometric approaches: first classifying variables into predetermined blocks; and second, using the general to specific approach. Statistical analyses and in-depth interviews confirm that women entrepreneurs’ personal resources and social capital have a significant role in their business growth. Further, it reveals that the moral support of immediate family, independent mobility and being allowed to meet with men play a decisive role in the sales and employment growth of women-owned enterprises in an Islamic country such as Pakistan

    The Hartree limit of Born's ensemble for the ground state of a bosonic atom or ion

    Full text link
    The non-relativistic bosonic ground state is studied for quantum N-body systems with Coulomb interactions, modeling atoms or ions made of N "bosonic point electrons" bound to an atomic point nucleus of Z "electron" charges, treated in Born--Oppenheimer approximation. It is shown that the (negative) ground state energy E(Z,N) yields the monotonically growing function (E(l N,N) over N cubed). By adapting an argument of Hogreve, it is shown that its limit as N to infinity for l > l* is governed by Hartree theory, with the rescaled bosonic ground state wave function factoring into an infinite product of identical one-body wave functions determined by the Hartree equation. The proof resembles the construction of the thermodynamic mean-field limit of the classical ensembles with thermodynamically unstable interactions, except that here the ensemble is Born's, with the absolute square of the ground state wave function as ensemble probability density function, with the Fisher information functional in the variational principle for Born's ensemble playing the role of the negative of the Gibbs entropy functional in the free-energy variational principle for the classical petit-canonical configurational ensemble.Comment: Corrected version. Accepted for publication in Journal of Mathematical Physic

    The dynamics of thin vibrated granular layers

    Full text link
    We describe a series of experiments and computer simulations on vibrated granular media in a geometry chosen to eliminate gravitationally induced settling. The system consists of a collection of identical spherical particles on a horizontal plate vibrating vertically, with or without a confining lid. Previously reported results are reviewed, including the observation of homogeneous, disordered liquid-like states, an instability to a `collapse' of motionless spheres on a perfect hexagonal lattice, and a fluctuating, hexagonally ordered state. In the presence of a confining lid we see a variety of solid phases at high densities and relatively high vibration amplitudes, several of which are reported for the first time in this article. The phase behavior of the system is closely related to that observed in confined hard-sphere colloidal suspensions in equilibrium, but with modifications due to the effects of the forcing and dissipation. We also review measurements of velocity distributions, which range from Maxwellian to strongly non-Maxwellian depending on the experimental parameter values. We describe measurements of spatial velocity correlations that show a clear dependence on the mechanism of energy injection. We also report new measurements of the velocity autocorrelation function in the granular layer and show that increased inelasticity leads to enhanced particle self-diffusion.Comment: 11 pages, 7 figure

    Mirror Symmetry and Other Miracles in Superstring Theory

    Get PDF
    The dominance of string theory in the research landscape of quantum gravity physics (despite any direct experimental evidence) can, I think, be justified in a variety of ways. Here I focus on an argument from mathematical fertility, broadly similar to Hilary Putnam's 'no miracles argument' that, I argue, many string theorists in fact espouse. String theory leads to many surprising, useful, and well-confirmed mathematical 'predictions' - here I focus on mirror symmetry. These predictions are made on the basis of general physical principles entering into string theory. The success of the mathematical predictions are then seen as evidence for framework that generated them. I attempt to defend this argument, but there are nonetheless some serious objections to be faced. These objections can only be evaded at a high (philosophical) price.Comment: For submission to a Foundations of Physics special issue on "Forty Years Of String Theory: Reflecting On the Foundations" (edited by G. `t Hooft, E. Verlinde, D. Dieks and S. de Haro)

    Unification of dynamic density functional theory for colloidal fluids to include inertia and hydrodynamic interactions: derivation and numerical experiments.

    Get PDF
    Starting from the Kramers equation for the phase-space dynamics of the N-body probability distribution, we derive a dynamical density functional theory (DDFT) for colloidal fluids including the effects of inertia and hydrodynamic interactions (HI). We compare the resulting theory to extensive Langevin dynamics simulations for both hard rod systems and three-dimensional hard sphere systems with radially symmetric external potentials. As well as demonstrating the accuracy of the new DDFT, by comparing with previous DDFTs which neglect inertia, HI, or both, we also scrutinize the significance of including these effects. Close to local equilibrium we derive a continuum equation from the microscopic dynamics which is a generalized Navier–Stokes-like equation with additional non-local terms governing the effects of HI. For the overdamped limit we recover analogues of existing configuration-space DDFTs but with a novel diffusion tensor
    corecore