571 research outputs found
Annealed lower tails for the energy of a polymer
We consider the energy of a randomly charged polymer. We assume that only
charges on the same site interact pairwise. We study the lower tails of the
energy, when averaged over both randomness, in dimension three or more. As a
corollary, we obtain the correct temperature-scale for the Gibbs measure.Comment: 27 page
Many-particle quantum graphs and Bose-Einstein condensation
In this paper we propose quantum graphs as one-dimensional models with a
complex topology to study Bose-Einstein condensation and phase transitions in a
rigorous way. We fist investigate non-interacting many-particle systems on
quantum graphs and provide a complete classification of systems that exhibit
Bose-Einstein condensation. We then consider models of interacting particles
that can be regarded as a generalisation of the well-known Tonks-Girardeau gas.
Here our principal result is that no phase transitions occur in bosonic systems
with repulsive hardcore interactions, indicating an absence of Bose-Einstein
condensation
Study of a high spatial resolution 10B-based thermal neutron detector for application in neutron reflectometry: the Multi-Blade prototype
Although for large area detectors it is crucial to find an alternative to
detect thermal neutrons because of the 3He shortage, this is not the case for
small area detectors. Neutron scattering science is still growing its
instruments' power and the neutron flux a detector must tolerate is increasing.
For small area detectors the main effort is to expand the detectors'
performances. At Institut Laue-Langevin (ILL) we developed the Multi-Blade
detector which wants to increase the spatial resolution of 3He-based detectors
for high flux applications. We developed a high spatial resolution prototype
suitable for neutron reflectometry instruments. It exploits solid 10B-films
employed in a proportional gas chamber. Two prototypes have been constructed at
ILL and the results obtained on our monochromatic test beam line are presented
here
Gaussian field theories, random Cantor sets and multifractality
The computation of multifractal scaling properties associated with a critical
field theory involves non-local operators and remains an open problem using
conventional techniques of field theory. We propose a new description of
Gaussian field theories in terms of random Cantor sets and show how universal
multifractal scaling exponents can be calculated. We use this approach to
characterize the multifractal critical wave function of Dirac fermions
interacting with a random vector potential in two spatial dimensions. We show
that the multifractal scaling exponents are self-averaging.Comment: Extensive modifications of previous version; exact results replace
numerical calculation
The Approximating Hamiltonian Method for the Imperfect Boson Gas
The pressure for the Imperfect (Mean Field) Boson gas can be derived in
several ways. The aim of the present note is to provide a new method based on
the Approximating Hamiltonian argument which is extremely simple and very
general.Comment: 7 page
THERMODYNAMICS OF A BROWNIAN BRIDGE POLYMER MODEL IN A RANDOM ENVIRONMENT
We consider a directed random walk making either 0 or moves and a
Brownian bridge, independent of the walk, conditioned to arrive at point on
time . The Hamiltonian is defined as the sum of the square of increments of
the bridge between the moments of jump of the random walk and interpreted as an
energy function over the bridge connfiguration; the random walk acts as the
random environment. This model provides a continuum version of a model with
some relevance to protein conformation. The thermodynamic limit of the specific
free energy is shown to exist and to be self-averaging, i.e. it is equal to a
trivial --- explicitly computed --- random variable. An estimate of the
asymptotic behaviour of the ground state energy is also obtained.Comment: 20 pages, uuencoded postscrip
Proof of Bose-Einstein Condensation for Interacting Gases with a One-Particle Spectral Gap
Using a specially tuned mean-field Bose gas as a reference system, we
establish a positive lower bound on the condensate density for continuous Bose
systems with superstable two-body interactions and a finite gap in the
one-particle excitations spectrum, i.e. we prove for the first time standard
homogeneous Bose-Einstein condensation for such interacting systems
Directed polymers on a Cayley tree with spatially correlated disorder
In this paper we consider directed walks on a tree with a fixed branching
ratio K at a finite temperature T. We consider the case where each site (or
link) is assigned a random energy uncorrelated in time, but correlated in the
transverse direction i.e. within the shell. In this paper we take the
transverse distance to be the hierarchical ultrametric distance, but other
possibilities are discussed. We compute the free energy for the case of
quenched disorder and show that there is a fundamental difference between the
case of short range spatial correlations of the disorder which behaves
similarly to the non-correlated case considered previously by Derrida and Spohn
and the case of long range correlations which has a totally different overlap
distribution which approaches a single delta function about q=1 for large L,
where L is the length of the walk. In the latter case the free energy is not
extensive in L for the intermediate and also relevant range of L values,
although in the true thermodynamic limit extensivity is restored. We identify a
crossover temperature which grows with L, and whenever T<T_c(L) the system is
always in the low temperature phase. Thus in the case of long-ranged
correlation as opposed to the short-ranged case a phase transition is absent.Comment: 23 pages, 1 figure, standard latex. J. Phys. A, accepted for
publicatio
Deep subcutaneous application of poly-L-lactic acid as a filler for facial lipoatrophy in HIV-infected patients
Introduction: Facial lipoatrophy is a crucial problem of HIV-infected patients undergoing highly active antiretroviral therapy (HAART). Poly-L-lactic acid (PLA), provided as New-Fill(R)/Sculptra(TM), is known as one possible treatment option. In 2004 PLA was approved by the FDA as Sculptra(TM) for the treatment of lipoatrophy of the face in HIV-infected patients. While the first trials demonstrated relevant efficacy, this was to some extent linked to unwanted effects. As the depth of injection was considered relevant in this context, the application modalities of the preparation were changed. The preparation was to be injected more deeply into subcutaneous tissue, after increased dilution. Material and Methods: To test this approach we performed a pilot study following the new recommendations in 14 patients. Results: While the efficacy turned out to be about the same, tolerability was markedly improved. The increase in facial dermal thickness was particularly obvious in those patients who had suffered from lipoatrophy for a comparatively small period of time. Conclusion: With the new recommendations to dilute PLA powder and to inject it into the deeper subcutaneous tissue nodule formation is a minor problem. However, good treatment results can only be achieved if lipoatrophy is not too intense; treatment intervals should be about 2 - 3 weeks. Copyright (C) 2005 S. Karger AG, Basel
The Canonical Perfect Bose Gas in Casimir Boxes
We study the problem of Bose-Einstein condensation in the perfect Bose gas in
the canonical ensemble, in anisotropically dilated rectangular parallelpipeds
(Casimir boxes). We prove that in the canonical ensemble for these anisotropic
boxes there is the same type of generalized Bose-Einstein condensation as in
the grand-canonical ensemble for the equivalent geometry. However the amount of
condensate in the individual states is different in some cases and so are the
fluctuations.Comment: 23 page
- …
