100 research outputs found

    Myosin and tropomyosin stabilize the conformation of formin-nucleated actin filaments

    Get PDF
    The conformational elasticity of the actin cytoskeleton is essential for its versatile biological functions. Increasing evidence supports that the interplay between the structural and functional properties of actin filaments is finely regulated by actin-binding proteins, however, the underlying mechanisms and biological consequences are not completely understood. Previous studies showed that the binding of formins to the barbed end induces conformational transitions in actin filaments by making them more flexible through long-range allosteric interactions. These conformational changes are accompanied by altered functional properties of the filaments. To get insight into the conformational regulation of formin-nucleated actin structures, in the present work we investigated in detail how binding partners of formin-generated actin structures, myosin and tropomyosin, affect the conformation of the formin-nucleated actin filaments, using fluorescence spectroscopic approaches. Time-dependent fluorescence anisotropy and temperature-dependent Forster-type resonance energy transfer measurements revealed that heavy meromyosin, similarly to tropomyosin, restores the formin-induced effects and stabilizes the conformation of actin filaments. The stabilizing effect of heavy meromyosin is cooperative. The kinetic analysis revealed that despite the qualitatively similar effects of heavy meromyosin and tropomyosin on the conformational dynamics of actin filaments, the mechanisms of the conformational transition is different for the two proteins. Heavy meromyosin stabilizes the formin- nucleated actin filaments in an apparently single-step reaction upon binding, while the stabilization by tropomyosin occurs after complex formation. These observations support the idea that actin-binding proteins are key elements of the molecular mechanisms that regulate the conformational and functional diversity of actin filaments in living cells

    Robust Organizational Principles of Protrusive Biopolymer Networks in Migrating Living Cells

    Get PDF
    Cell migration is associated with the dynamic protrusion of a thin actin-based cytoskeletal extension at the cell front, which has been shown to consist of two different substructures, the leading lamellipodium and the subsequent lamellum. While the formation of the lamellipodium is increasingly well understood, organizational principles underlying the emergence of the lamellum are just beginning to be unraveled. We report here on a 1D mathematical model which describes the reaction-diffusion processes of a polarized actin network in steady state, and reproduces essential characteristics of the lamellipodium-lamellum system. We observe a steep gradient in filament lengths at the protruding edge, a local depolymerization maximum a few microns behind the edge, as well as a differential dominance of the network destabilizer ADF/cofilin and the stabilizer tropomyosin. We identify simple and robust organizational principles giving rise to the derived network characteristics, uncoupled from the specifics of any molecular implementation, and thus plausibly valid across cell types. An analysis of network length dependence on physico-chemical system parameters implies that to limit array treadmilling to cellular dimensions, network growth has to be truncated by mechanisms other than aging-induced depolymerization, e.g., by myosin-associated network dissociation at the transition to the cell body. Our work contributes to the analytical understanding of the cytoskeletal extension's bisection into lamellipodium and lamellum and sheds light on how cells organize their molecular machinery to achieve motility

    Kritische Bemerkungen zur Frage der Materialermüdung beim lebenden Knochen

    Full text link

    Die Thiopneumokoniose der Kovandarbeiter

    Full text link

    Beitrag zum mengenmäßigen Wachstum der Knochen<sup>*</sup>

    Full text link

    Beitrag zum Wachstum der Extremitätenknochen im Röntgenbild

    Full text link
    corecore