916 research outputs found
Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population
Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of that risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortia and population based resources, we find genetic links between ASDs and typical variation in social behavior and adaptive functioning. This finding is evidenced through both inherited and de novo variation, indicating that multiple types of genetic risk for ASDs influence a continuum of behavioral and developmental traits, the severe tail of which can result in an ASD or other neuropsychiatric disorder diagnosis. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology
Do regional brain volumes and major depressive disorder share genetic architecture?:A study of Generation Scotland (<i>n</i>=19,762), UK Biobank (<i>n</i>=24,048) and the English Longitudinal Study of Ageing (<i>n</i>=5,766)
Major depressive disorder (MDD) is a heritable and highly debilitating condition. It is commonly associated with subcortical volumetric abnormalities, the most replicated of these being reduced hippocampal volume. Using the most recent published data from Enhancing Neuroimaging Genetics through Meta-analysis (ENIGMA) consortium's genome-wide association study of regional brain volume, we sought to test whether there is shared genetic architecture between seven subcortical brain volumes and intracranial volume (ICV) and MDD. We explored this using linkage disequilibrium score regression, polygenic risk scoring (PRS) techniques, Mendelian randomisation (MR) analysis and BUHMBOX. Utilising summary statistics from ENIGMA and Psychiatric Genomics Consortium, we demonstrated that hippocampal volume was positively genetically correlated with MDD (rG=0.46, P=0.02), although this did not survive multiple comparison testing. None of the other six brain regions studied were genetically correlated and amygdala volume heritability was too low for analysis. Using PRS analysis, no regional volumetric PRS demonstrated a significant association with MDD or recurrent MDD. MR analysis in hippocampal volume and MDD identified no causal association, however, BUHMBOX analysis identified genetic subgrouping in GS:SFHS MDD cases only (P=0.00281). In this study, we provide some evidence that hippocampal volume and MDD may share genetic architecture in a subgroup of individuals, albeit the genetic correlation did not survive multiple testing correction and genetic subgroup heterogeneity was not replicated. In contrast, we found no evidence to support a shared genetic architecture between MDD and other regional subcortical volumes or ICV
LD Hub:a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis
Motivation: LD score regression is a reliable and efficient method of using genome-wide association study (GWAS) summary-level results data to estimate the SNP heritability of complex traits and diseases, partition this heritability into functional categories, and estimate the genetic correlation between different phenotypes. Because the method relies on summary level results data, LD score regression is computationally tractable even for very large sample sizes. However, publicly available GWAS summary-level data are typically stored in different databases and have different formats, making it difficult to apply LD score regression to estimate genetic correlations across many different traits simultaneously. Results: In this manuscript, we describe LD Hub - a centralized database of summary-level GWAS results for 173 diseases/traits from different publicly available resources/consortia and a web interface that automates the LD score regression analysis pipeline. To demonstrate functionality and validate our software, we replicated previously reported LD score regression analyses of 49 traits/diseases using LD Hub; and estimated SNP heritability and the genetic correlation across the different phenotypes. We also present new results obtained by uploading a recent atopic dermatitis GWAS meta-analysis to examine the genetic correlation between the condition and other potentially related traits. In response to the growing availability of publicly accessible GWAS summary-level results data, our database and the accompanying web interface will ensure maximal uptake of the LD score regression methodology, provide a useful database for the public dissemination of GWAS results, and provide a method for easily screening hundreds of traits for overlapping genetic aetiologies
Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders
Personality is influenced by genetic and environmental factors1
and associated with mental health. However, the underlying
genetic determinants are largely unknown. We identified six
genetic loci, including five novel loci2,3, significantly associated
with personality traits in a meta-analysis of genome-wide
association studies (N = 123,132–260,861). Of these genomewide
significant loci, extraversion was associated with variants
in WSCD2 and near PCDH15, and neuroticism with variants
on chromosome 8p23.1 and in L3MBTL2. We performed a
principal component analysis to extract major dimensions
underlying genetic variations among five personality traits
and six psychiatric disorders (N = 5,422–18,759). The first
genetic dimension separated personality traits and psychiatric
disorders, except that neuroticism and openness to experience
were clustered with the disorders. High genetic correlations
were found between extraversion and attention-deficit–
hyperactivity disorder (ADHD) and between openness and
schizophrenia and bipolar disorder. The second genetic
dimension was closely aligned with extraversion–introversion
and grouped neuroticism with internalizing psychopathology
(e.g., depression or anxiety)
LD Hub:a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis
Motivation: LD score regression is a reliable and efficient method of using genome-wide association study (GWAS) summary-level results data to estimate the SNP heritability of complex traits and diseases, partition this heritability into functional categories, and estimate the genetic correlation between different phenotypes. Because the method relies on summary level results data, LD score regression is computationally tractable even for very large sample sizes. However, publicly available GWAS summary-level data are typically stored in different databases and have different formats, making it difficult to apply LD score regression to estimate genetic correlations across many different traits simultaneously. Results: In this manuscript, we describe LD Hub - a centralized database of summary-level GWAS results for 173 diseases/traits from different publicly available resources/consortia and a web interface that automates the LD score regression analysis pipeline. To demonstrate functionality and validate our software, we replicated previously reported LD score regression analyses of 49 traits/diseases using LD Hub; and estimated SNP heritability and the genetic correlation across the different phenotypes. We also present new results obtained by uploading a recent atopic dermatitis GWAS meta-analysis to examine the genetic correlation between the condition and other potentially related traits. In response to the growing availability of publicly accessible GWAS summary-level results data, our database and the accompanying web interface will ensure maximal uptake of the LD score regression methodology, provide a useful database for the public dissemination of GWAS results, and provide a method for easily screening hundreds of traits for overlapping genetic aetiologies. Availability and implementation: The web interface and instructions for using LD Hub are available at http://ldsc.broadinstitute.org/<br/
Eating disorders: from twin studies to candidate genes and beyond
Substantial effort has been put into the exploration of the biological background of eating disorders, through family, twin and molecular genetic studies. Family studies have shown that anorexia (AN) and bulimia nervosa (BN) are strongly familial, and that familial etiologic factors appear to be shared by both disorders. Twin studies often focus on broader phenotypes or subthreshold eating disorders. These studies consistently yielded moderate to substantial heritabilities. In addition, there has been a proliferation of molecular genetic studies that focused on Diagnostic and Statistical Manual of Mental Disorders (4th ed.; DSM-IV; American Psychiatric Association, 1994) AN and BN. Seven linkage regions have been identified in genome-wide screens. Many genetic association studies have been performed, but no consistent association between a candidate gene and AN or BN has been reported. Larger genetic association studies and collaborations are needed to examine the involvement of several candidate genes and biological pathways in eating disorders. In addition, twin studies should be designed to assist the molecular work by further exploring genetic determinants of endophenotypes, evaluating the magnitude of contribution to liability of measured genotypes as well as environmental risk factors related to eating disorders. In this manner twin and molecular studies can move the field forward in a mutually informative way
Genome-wide association study identifies loci associated with liability to alcohol and drug dependence that is associated with variability in reward-related ventral striatum activity in African- and European-Americans.
Genetic influences on alcohol and drug dependence partially overlap, however, specific loci underlying this overlap remain unclear. We conducted a genome-wide association study (GWAS) of a phenotype representing alcohol or illicit drug dependence (ANYDEP) among 7291 European-Americans (EA; 2927 cases) and 3132 African-Americans (AA: 1315 cases) participating in the family-based Collaborative Study on the Genetics of Alcoholism. ANYDEP was heritable (h 2 in EA = 0.60, AA = 0.37). The AA GWAS identified three regions with genome-wide significant (GWS; P < 5E-08) single nucleotide polymorphisms (SNPs) on chromosomes 3 (rs34066662, rs58801820) and 13 (rs75168521, rs78886294), and an insertion-deletion on chromosome 5 (chr5:141988181). No polymorphisms reached GWS in the EA. One GWS region (chromosome 1: rs1890881) emerged from a trans-ancestral meta-analysis (EA + AA) of ANYDEP, and was attributable to alcohol dependence in both samples. Four genes (AA: CRKL, DZIP3, SBK3; EA: P2RX6) and four sets of genes were significantly enriched within biological pathways for hemostasis and signal transduction. GWS signals did not replicate in two independent samples but there was weak evidence for association between rs1890881 and alcohol intake in the UK Biobank. Among 118 AA and 481 EA individuals from the Duke Neurogenetics Study, rs75168521 and rs1890881 genotypes were associated with variability in reward-related ventral striatum activation. This study identified novel loci for substance dependence and provides preliminary evidence that these variants are also associated with individual differences in neural reward reactivity. Gene discovery efforts in non-European samples with distinct patterns of substance use may lead to the identification of novel ancestry-specific genetic markers of risk
ASD and schizophrenia show distinct developmental profiles in common genetic overlap with population-based social communication difficulties
Difficulties in social communication are part of the phenotypic overlap between autism spectrum disorders (ASD) and schizophrenia. Both conditions follow, however, distinct developmental patterns. Symptoms of ASD typically occur during early childhood, whereas most symptoms characteristic of schizophrenia do not appear before early adulthood. We investigated whether overlap in common genetic in fluences between these clinical conditions and impairments in social communication depends on the developmental stage of the assessed trait. Social communication difficulties were measured in typically-developing youth (Avon Longitudinal Study of Parents and Children,N⩽5553, longitudinal assessments at 8, 11, 14 and 17 years) using the Social Communication Disorder Checklist. Data on clinical ASD (PGC-ASD: 5305 cases, 5305 pseudo-controls; iPSYCH-ASD: 7783 cases, 11 359 controls) and schizophrenia (PGC-SCZ2: 34 241 cases, 45 604 controls, 1235 trios) were either obtained through the Psychiatric Genomics Consortium (PGC) or the Danish iPSYCH project. Overlap in genetic in fluences between ASD and social communication difficulties during development decreased with age, both in the PGC-ASD and the iPSYCH-ASD sample. Genetic overlap between schizophrenia and social communication difficulties, by contrast, persisted across age, as observed within two independent PGC-SCZ2 subsamples, and showed an increase in magnitude for traits assessed during later adolescence. ASD- and schizophrenia-related polygenic effects were unrelated to each other and changes in trait-disorder links reflect the heterogeneity of genetic factors in fluencing social communication difficulties during childhood versus later adolescence. Thus, both clinical ASD and schizophrenia share some genetic in fluences with impairments in social communication, but reveal distinct developmental profiles in their genetic links, consistent with the onset of clinical symptom
Corrigendum to Genome-wide analysis of over 106 000 individuals identifies 9 neuroticism-associated loci
Neuroticism is a personality trait of fundamental importance for psychological well-being and public health. It is strongly associated with major depressive disorder (MDD) and several other psychiatric conditions. Although neuroticism is heritable, attempts to identify the alleles involved in previous studies have been limited by relatively small sample sizes. Here we report a combined meta-analysis of genome-wide association study (GWAS) of neuroticism that includes 91 370 participants from the UK Biobank cohort, 6659 participants from the Generation Scotland: Scottish Family Health Study (GS:SFHS) and 8687 participants from a QIMR (Queensland Institute of Medical Research) Berghofer Medical Research Institute (QIMR) cohort. All participants were assessed using the same neuroticism instrument, the Eysenck Personality Questionnaire-Revised (EPQ-R-S) Short Form’s Neuroticism scale. We found a single-nucleotide polymorphism-based heritability estimate for neuroticism of ~15% (s.e.=0.7%). Meta-analysis identified nine novel loci associated with neuroticism. The strongest evidence for association was at a locus on chromosome 8 (P=1.5 × 10−15) spanning 4 Mb and containing at least 36 genes. Other associated loci included interesting candidate genes on chromosome 1 (GRIK3 (glutamate receptor ionotropic kainate 3)), chromosome 4 (KLHL2 (Kelch-like protein 2)), chromosome 17 (CRHR1 (corticotropin-releasing hormone receptor 1) and MAPT (microtubule-associated protein Tau)) and on chromosome 18 (CELF4 (CUGBP elav-like family member 4)). We found no evidence for genetic differences in the common allelic architecture of neuroticism by sex. By comparing our findings with those of the Psychiatric Genetics Consortia, we identified a strong genetic correlation between neuroticism and MDD and a less strong but significant genetic correlation with schizophrenia, although not with bipolar disorder. Polygenic risk scores derived from the primary UK Biobank sample captured ~1% of the variance in neuroticism in the GS:SFHS and QIMR samples, although most of the genome-wide significant alleles identified within a UK Biobank-only GWAS of neuroticism were not independently replicated within these cohorts. The identification of nine novel neuroticism-associated loci will drive forward future work on the neurobiology of neuroticism and related phenotypes
- …
