243 research outputs found

    Population pharmacokinetics at two dose levels and pharmacodynamic profiling of flucloxacillin

    Get PDF
    Flucloxacillin is often used for the treatment of serious infections due to sensitive staphylococci. The pharmacokinetic (PK)-pharmacodynamic (PD) breakpoint of flucloxacillin has not been determined by the use of population PK. Targets based on the duration of non-protein-bound concentrations above the MIC (fT(> MIC)) best correlate with clinical cure rates for beta-lactams. We compared the breakpoints for flucloxacillin between several dosage regimens. In a randomized, two-way crossover study, 10 healthy volunteers received 500 mg and 1,000 mg flucloxacillin as 5-min intravenous infusions. Drug concentrations were determined by high-pressure liquid chromatography. We used the programs WinNonlin for noncompartmental analysis and statistics and NONMEM for population PK and Monte Carlo simulation. We compared the probability of target attainment (PTA) for intermittent- and continuous-dosage regimens based on the targets of fT(> MIS)s of >= 50% and >= 30% of the dosing interval. The clearance and the volume of distribution were very similar after the administration of 500 mg and 1,000 mg flucloxacillin. We estimated renal and nonrenal clearances of 5.37 liters/h (coefficient of variation, 19%) and 2.73 liters/h (33%). For near maximal killing (target, fT(> MIC) of >= 50%) flucloxacillin showed a robust (>= 90%) PTA up to MICs of 0.75 to 1 mg/liter (PTA of 860/v at 1 mg/liter) for a continuous or a prolonged infusion of 6 g/day. Short-term infusions of 6 g/day had a lower breakpoint of 0.25 to 0.375 mg/liter. The flucloxacillin PK was linear for doses of 500 mg and 1,000 mg. Prolonged and continuous infusion at a 66% lower daily dose achieved the same PK-PD breakpoints as short-term infusions. Prolonged infusion and continuous infusion are appealing options for the treatment of serious infections caused by sensitive staphylococci

    Clinical population pharmacokinetics and toxicodynamics of linezolid

    Get PDF
    Thrombocytopenia is a common side effect of linezolid, an oxazolidinone antibiotic often used to treat multidrug-resistant Gram-positive bacterial infections. Various risk factors have been suggested, including linezolid dose and duration of therapy, baseline platelet counts, and renal dysfunction; still, the mechanisms behind this potentially treatment-limiting toxicity are largely unknown. A clinical study was conducted to investigate the relationship between linezolid pharmacokinetics and toxico-dynamics and inform strategies to prevent and manage linezolid-associated toxicity. Forty-one patients received 42 separate treatment courses of linezolid (600 mg every 12 h). A new mechanism-based, population pharmacokinetic/toxicodynamic model was developed to describe the time course of plasma linezolid concentrations and platelets. A linezolid concentration of 8.06 mg/ liter (101% between-patient variability) inhibited the synthesis of platelet precursor cells by 50%. Simulations predicted treatment durations of 5 and 7 days to carry a substantially lower risk than 10- to 28-day therapy for platelet nadirs o

    Novel population pharmacokinetic approach to explain the differences between cystic fibrosis patients and healthy volunteers via protein binding

    Get PDF
    The pharmacokinetics in patients with cystic fibrosis (CF) has long been thought to differ considerably from that in healthy volunteers. For highly protein bound beta -lactams, profound pharmacokinetic differences were observed between comparatively morbid patients with CF and healthy volunteers. These differences could be explained by body weight and body composition for beta -lactams with low protein binding. This study aimed to develop a novel population modeling approach to describe the pharmacokinetic differences between both subject groups by estimating protein binding. Eight patients with CF (lean body mass [LBM]: 39.8 +/- 5.4kg) and six healthy volunteers (LBM: 53.1 +/- 9.5kg) received 1027.5 mg cefotiam intravenously. Plasma concentrations and amounts in urine were simultaneously modelled. Unscaled total clearance and volume of distribution were 3% smaller in patients with CF compared to those in healthy volunteers. After allometric scaling by LBM to account for body size and composition, the remaining pharmacokinetic differences were explained by estimating the unbound fraction of cefotiam in plasma. The latter was fixed to 50% in male and estimated as 54.5% in female healthy volunteers as well as 56.3% in male and 74.4% in female patients with CF. This novel approach holds promise for characterizing the pharmacokinetics in special patient populations with altered protein binding

    The combination of colistin and doripenem is synergistic against Klebsiella pneumoniae at multiple inocula and suppresses colistin resistance in an in vitro pharmacokinetic/pharmacodynamic model

    Get PDF
    There has been a resurgence of interest in aerosolization of antibiotics for treatment of patients with severe pneumonia caused by multidrug-resistant pathogens. A combination formulation of amikacin-fosfomycin is currently undergoing clinical testing although the exposure-response relationships of these drugs have not been fully characterized. The aim of this study was to describe the individual and combined antibacterial effects of simulated epithelial lining fluid exposures of aerosolized amikacin and fosfomycin against resistant clinical isolates of Pseudomonas aeruginosa (MICs of 16 mg/liter and 64 mg/liter) and Klebsiella pneumoniae (MICs of 2 mg/liter and 64 mg/liter) using a dynamic hollow-fiber infection model over 7 days. Targeted peak concentrations of 300 mg/liter amikacin and/or 1,200 mg/liter fosfomycin as a 12-hourly dosing regimens were used. Quantitative cultures were performed to describe changes in concentrations of the total and resistant bacterial populations. The targeted starting inoculum was 10(8) CFU/ml for both strains. We observed that neither amikacin nor fosfomycin monotherapy was bactericidal against P. aeruginosa while both were associated with rapid amplification of resistant P. aeruginosa strains (about 10(8) to 10(9) CFU/ml within 24 to 48 h). For K. pneumoniae, amikacin but not fosfomycin was bactericidal. When both drugs were combined, a rapid killing was observed for P. aeruginosa and K. pneumoniae (6-log kill within 24 h). Furthermore, the combination of amikacin and fosfomycin effectively suppressed growth of resistant strains of P. aeruginosa and K. pneumoniae In conclusion, the combination of amikacin and fosfomycin was effective at maximizing bacterial killing and suppressing emergence of resistance against these clinical isolates

    Colistin and Polymyxin B Dosage Regimens against Acinetobacter baumannii: Differences in Activity and the Emergence of Resistance

    Get PDF
    ABSTRACT Infections caused by multidrug-resistant Acinetobacter baumannii are a major public health problem, and polymyxins are often the last line of therapy for recalcitrant infections by such isolates. The pharmacokinetics of the two clinically used polymyxins, polymyxin B and colistin, differ considerably, since colistin is administered as an inactive prodrug that undergoes slow conversion to colistin. However, the impact of these substantial pharmacokinetic differences on bacterial killing and resistance emergence is poorly understood. We assessed clinically relevant polymyxin B and colistin dosage regimens against one reference and three clinical A. baumannii strains in a dynamic one-compartment in vitro model. A new mechanism-based pharmacodynamic model was developed to describe and predict the drug concentrations and viable counts of the total and resistant populations. Rapid attainment of target concentrations was shown to be critical for polymyxin-induced bacterial killing. All polymyxin B regimens achieved peak concentrations of at least 1 mg/liter within 1 h and caused ≥4 log 10 killing at 1 h. In contrast, the slow rise of colistin concentrations to 3 mg/liter over 48 h resulted in markedly reduced bacterial killing. A significant (4 to 6 log 10 CFU/ml) amplification of resistant bacterial populations was common to all dosage regimens. The developed mechanism-based model explained the observed bacterial killing, regrowth, and resistance. The model also implicated adaptive polymyxin resistance as a key driver of bacterial regrowth and predicted the amplification of preexisting, highly polymyxin-resistant bacterial populations following polymyxin treatment. Antibiotic combination therapies seem the most promising option for minimizing the emergence of polymyxin resistance

    Synergistic Activity of Colistin and Rifampin Combination against Multidrug-Resistant Acinetobacter baumannii in an <i>In Vitro</i> Pharmacokinetic/Pharmacodynamic Model

    Full text link
    ABSTRACT Combination therapy may be required for multidrug-resistant (MDR) Acinetobacter baumannii . This study systematically investigated bacterial killing and emergence of colistin resistance with colistin and rifampin combinations against MDR A. baumannii . Studies were conducted over 72 h in an in vitro pharmacokinetic (PK)/pharmacodynamic (PD) model at inocula of ∼10 6 and ∼10 8 CFU/ml using two MDR clinical isolates of A. baumannii , FADDI-AB030 (colistin susceptible) and FADDI-AB156 (colistin resistant). Three combination regimens achieving clinically relevant concentrations (constant colistin concentration of 0.5, 2, or 5 mg/liter and a rifampin maximum concentration [ C max ] of 5 mg/liter every 24 hours; half-life, 3 h) were investigated. Microbiological response was measured by serial bacterial counts. Population analysis profiles assessed emergence of colistin resistance. Against both isolates, combinations resulted in substantially greater killing at the low inoculum; combinations containing 2 and 5 mg/liter colistin increased killing at the high inoculum. Combinations were additive or synergistic at 6, 24, 48, and 72 h with all colistin concentrations against FADDI-AB030 and FADDI-AB156 in, respectively, 8 and 11 of 12 cases (i.e., all 3 combinations) at the 10 6 -CFU/ml inoculum and 8 and 7 of 8 cases with the 2- and 5-mg/liter colistin regimens at the 10 8 -CFU/ml inoculum. For FADDI-AB156, killing by the combination was ∼2.5 to 7.5 and ∼2.5 to 5 log 10 CFU/ml greater at the low inoculum (all colistin concentrations) and high inoculum (2 and 5 mg/liter colistin), respectively. Emergence of colistin-resistant subpopulations was completely suppressed in the colistin-susceptible isolate with all combinations at both inocula. Our study provides important information for optimizing colistin-rifampin combinations against colistin-susceptible and -resistant MDR A. baumannii . </jats:p

    Comparative pharmacodynamics of four different carbapenems in combination with polymyxin B against carbapenem-resistant Acinetobacter baumannii

    Get PDF
    The objective of this study was to determine the comparative pharmacodynamics of four different carbapenems in combination with polymyxin B (PMB) against carbapenem-resistant Acinetobacter baumannii isolates using time–kill experiments at two different inocula. Two A. baumannii strains (03-149-1 and N16870) with carbapenem minimum inhibitory concentrations (MICs) ranging from 8 to 64 mg/L were investigated in 48-h time–kill experiments using starting inocula of 106 CFU/mL and 108 CFU/mL. Concentration arrays of ertapenem, doripenem, meropenem and imipenem at 0.25×, 0.5×, 1×, 1.5× and 2× published maximum serum concentration (Cmax) values (Cmax concentrations of 12, 21, 48 and 60 mg/L, respectively) were investigated in the presence of 1.5 mg/L PMB. Use of carbapenems without PMB resulted in drastic re-growth. All carbapenem combinations were able to achieve a ≥3 log10 CFU/mL reduction by 4 h against both strains at 106 CFU/mL, whereas maximum reductions against strain 03-149-1 at 108 CFU/mL were 1.0, 3.2, 2.2 and 3.3 log10 CFU/mL for ertapenem, doripenem, meropenem and imipenem, respectively. None of the combinations were capable of reducing 108 CFU/mL of N16870 by ≥2 log10 CFU/mL. Ertapenem combinations consistently displayed the least activity, whereas doripenem, meropenem and imipenem combinations had similar activities that were poorly predicted by carbapenem MICs. As doripenem, meropenem, or imipenem displayed similar pharmacodyanmics in combination, the decision of which carbapenem to use in combination with PMB may be based on toxicodynamic profiles if drastic discordance in MICs is not present

    Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa.

    Get PDF
    Nosocomial and community-acquired infections caused by multidrug resistant bacteria represent a major human health problem. Thus, there is an urgent need for the development of antibiotics with new modes of action. In this study, we investigated the antibacterial characteristics and mode of action of a new antimicrobial compound, SPI031 (N-alkylated 3, 6-dihalogenocarbazol 1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol), which was previously identified in our group. This compound exhibits broad-spectrum antibacterial activity, including activity against the human pathogens Staphylococcus aureus and Pseudomonas aeruginosa. We found that SPI031 has rapid bactericidal activity (7-log reduction within 30 min at 4x MIC) and that the frequency of resistance development against SPI031 is low. To elucidate the mode of action of SPI031, we performed a macromolecular synthesis assay, which showed that SPI031 causes non-specific inhibition of macromolecular biosynthesis pathways. Liposome leakage and membrane permeability studies revealed that SPI031 rapidly exerts membrane damage, which is likely the primary cause of its antibacterial activity. These findings were supported by a mutational analysis of SPI031-resistant mutants, a transcriptome analysis and the identification of transposon mutants with altered sensitivity to the compound. In conclusion, our results show that SPI031 exerts its antimicrobial activity by causing membrane damage, making it an interesting starting point for the development of new antibacterial therapies

    Combinatorial pharmacodynamics of polymyxin B and tigecycline against heteroresistant Acinetobacter baumannii

    Get PDF
    The prevalence of heteroresistant Acinetobacter baumannii is increasing. Infections due to these resistant pathogens pose a global treatment challenge. Here, the pharmacodynamic activities of polymyxin B (PMB) (2–20 mg/L) and tigecycline (0.15–4 mg/L) were evaluated as monotherapy and in combination using a 4 × 4 concentration array against two carbapenem-resistant and polymyxin-heteroresistant A. baumannii isolates. Time Kill Experiments was employed at starting inocula of 106 and 108 CFU/mL over 48 h. Clinically relevant combinations of PMB (2 mg/L) and tigecycline (0.90 mg/L) resulted in greater reductions in the bacterial population compared with polymyxin alone by 8 h (ATCC 19606, −6.38 vs. −3.43 log10 CFU/mL; FADDI AB115, −1.38 vs. 2.08 log10 CFU/mL). At 10× the clinically achievable concentration (PMB 20 mg/L in combination with tigecycline 0.90 mg/L), there was bactericidal activity against FADDI AB115 by 4 h that was sustained until 32 h, and against ATCC 19606 that was sustained for 48 h. These studies show that aggressive polymyxin-based dosing in combination with clinically achievable tigecycline concentrations results in early synergistic activity that is not sustained beyond 8 h, whereas combinations with higher tigecycline concentrations result in sustained bactericidal activity against both isolates at both inocula. These results indicate a need for optimised front-loaded polymyxin-based combination regimens that utilise high polymyxin doses at the onset of treatment to achieve good pharmacodynamic activity whilst minimising adverse events

    Paradoxical Effect of Polymyxin B: High Drug Exposure Amplifies Resistance in Acinetobacter baumannii

    Get PDF
    ABSTRACT Administering polymyxin antibiotics in a traditional fashion may be ineffective against Gram-negative ESKAPE ( Enterococcus faecium , Staphylococcus aureus , Klebsiella pneumoniae , Acinetobacter baumannii , Pseudomonas aeruginosa , and Enterobacter species) pathogens. Here, we explored increasing the dose intensity of polymyxin B against two strains of Acinetobacter baumannii in the hollow-fiber infection model. The following dosage regimens were simulated for polymyxin B ( t 1/2 = 8 h): non-loading dose (1.43 mg/kg of body weight every 12 h [q12h]), loading dose (2.22 mg/kg q12h for 1 dose and then 1.43 mg/kg q12h), front-loading dose (3.33 mg/kg q12h for 1 dose followed by 1.43 mg/kg q12h), burst (5.53 mg/kg for 1 dose), and supraburst (18.4 mg/kg for 1 dose). Against both A. baumannii isolates, a rapid initial decline in the total population was observed within the first 6 h of polymyxin exposure, whereby greater polymyxin B exposure resulted in greater maximal killing of −1.25, −1.43, −2.84, −2.84, and −3.40 log 10 CFU/ml within the first 6 h. Unexpectedly, we observed a paradoxical effect whereby higher polymyxin B exposures dramatically increased resistant subpopulations that grew on agar containing up to 10 mg/liter of polymyxin B over 336 h. High drug exposure also proliferated polymyxin-dependent growth. A cost-benefit pharmacokinetic/pharmacodynamic relationship between 24-h killing and 336-h resistance was explored. The intersecting point, where the benefit of bacterial killing was equal to the cost of resistance, was an f AUC 0–24 (area under the concentration-time curve from 0 to 24 h for the free, unbound fraction of drug) of 38.5 mg · h/liter for polymyxin B. Increasing the dose intensity of polymyxin B resulted in amplification of resistance, highlighting the need to utilize polymyxins as part of a combination against high-bacterial-density A. baumannii infections
    corecore