7,658 research outputs found
NASA Ames potential flow analysis (POTFAN) geometry program (POTGEM), version 1
A computer program known as POTGEM is reported which has been developed as an independent segment of a three-dimensional linearized, potential flow analysis system and which is used to generate a panel point description of arbitrary, three-dimensional bodies from convenient engineering descriptions consisting of equations and/or tables. Due to the independent, modular nature of the program, it may be used to generate corner points for other computer programs
NHS reforms and the working lives of midwives and physiotherapists
From 2000 the NHS was subjected to a series of far reaching reforms, the purposes of which were to increase the role of the primary care sector in commissioning and providing services, promote healthier life styles, reduce health inequality, and improve service standards. These were seen as requiring a greater leadership role from health professionals, closer and more cooperative working between health professionals, and between health professionals, social services, and community and other service providers. The project surveyed a random sample of midwives and physiotherapists to investigate their perceptions of the effectiveness of the reforms, and their effects on working
lives. The predominant perception was that NHS reforms had negatively affected the funding of their services; and had done little to improve service quality, delivery or organisation. Although the potential existed for the reforms
to improve services, the necessary resources and required staffing were not made available and the objectives of the reforms were only partially secured by intensifying of work. The downside of this was a deterioration of the sociopsychological wellbeing of midwives and physiotherapists, especially the former, exacerbating the shortage of skilled and experienced. Shortage of staff
and the associated increased work burdens were demoralising and demotivating; morale and job satisfaction declined, and job insecurity and labour turnover increased
System analysis approach to deriving design criteria (loads) for Space Shuttle and its payloads. Volume 1: General statement of approach
Space shuttle, the most complex transportation system designed to date, illustrates the requirement for an analysis approach that considers all major disciplines simultaneously. Its unique cross coupling and high sensitivity to aerodynamic uncertainties and high performance requirements dictated a less conservative approach than those taken in programs. Analyses performed for the space shuttle and certain payloads, Space Telescope and Spacelab, are used a examples. These illustrate the requirements for system analysis approaches and criteria, including dynamic modeling requirements, test requirements control requirements and the resulting design verification approaches. A survey of the problem, potential approaches available as solutions, implications for future systems, and projected technology development areas are addressed
Aircraft measurements of electrified clouds at Kennedy Space Center. Part 2: Case study: 4 November 1988 (88309)
During the fall of 1988, a Schweizer airplane equipped to measure electric field and other meteorological parameters flew over Kennedy Space Center (KSC) in a program to study clouds defined in the existing launch restriction criteria. A case study is presented of a single flight over KSC on November 4, 1988. This flight was chosen for two reasons: (1) the clouds were weakly electrified, and no lightning was reported during the flight; and (2) electric field mills in the surface array at KSC indicated field strengths greater than 3 kV/m, yet the aircraft flying directly over them at an altitude of 3.4 km above sea level measured field strengths of less than 1.6 kV/m. A weather summary, sounding description, record of cloud types, and an account of electric field measurements are included
Triton's surface age and impactor population revisited in light of Kuiper Belt fluxes: Evidence for small Kuiper Belt objects and recent geological activity
Neptune's largest satellite, Triton, is one of the most fascinating and
enigmatic bodies in the solar system. Among its numerous interesting traits,
Triton appears to have far fewer craters than would be expected if its surface
was primordial. Here we combine the best available crater count data for Triton
with improved estimates of impact rates by including the Kuiper Belt as a
source of impactors. We find that the population of impactors creating the
smallest observed craters on Triton must be sub-km in scale, and that this
small-impactor population can be best fit by a differential power-law size
index near -3. Such results provide interesting, indirect probes of the unseen
small body population of the Kuiper Belt. Based on the modern, Kuiper Belt and
Oort Cloud impactor flux estimates, we also recalculate estimated ages for
several regions of Triton's surface imaged by Voyager 2, and find that Triton
was probably active on a time scale no greater than 0.1-0.3 Gyr ago (indicating
Triton was still active after some 90% to 98% of the age of the solar system),
and perhaps even more recently. The time-averaged volumetric resurfacing rate
on Triton implied by these results, 0.01 km yr or more, is likely
second only to Io and Europa in the outer solar system, and is within an order
of magnitude of estimates for Venus and for the Earth's intraplate zones. This
finding indicates that Triton likely remains a highly geologically active world
at present, some 4.5 Gyr after its formation. We briefly speculate on how such
a situation might obtain.Comment: 14 pages (TeX), plus 2 postscript figures Stern & McKinnon, 2000, AJ,
in pres
Aircraft measurements of electrified clouds at Kennedy Space Center
The space-vehicle launch commit criteria for weather and atmospheric electrical conditions in us at Cape Canaveral Air Force Station and Kennedy Space Center (KSC) have been made restrictive because of the past difficulties that have arisen when space vehicles have triggered lightning discharge after their launch during cloudy weather. With the present ground-base instrumentation and our limited knowledge of cloud electrification process over this region of Florida, it has not been possible to provide a quantitative index of safe launching conditions. During the fall of 1988, a Schweizer 845 airplane equipped to measure electric field and other meteorological parameters flew over KSC in a program to study clouds defined in the existing launch restriction criteria. All aspects of this program are addressed including planning, method, and results. A case study on the November 4, 1988 flight is also presented
Under Pressure: Quenching Star Formation in Low-Mass Satellite Galaxies via Stripping
Recent studies of galaxies in the local Universe, including those in the
Local Group, find that the efficiency of environmental (or satellite) quenching
increases dramatically at satellite stellar masses below ~ . This suggests a physical scale where quenching transitions from a
slow "starvation" mode to a rapid "stripping" mode at low masses. We
investigate the plausibility of this scenario using observed HI surface density
profiles for a sample of 66 nearby galaxies as inputs to analytic calculations
of ram-pressure and viscous stripping. Across a broad range of host properties,
we find that stripping becomes increasingly effective at $M_{*} < 10^{8-9}\
{\rm M}_{\odot}n_{\rm halo} <
10^{-3.5}{\rm cm}^{-3}$), we find that stripping is not fully effective;
infalling satellites are, on average, stripped of < 40 - 70% of their cold gas
reservoir, which is insufficient to match observations. By including a host
halo gas distribution that is clumpy and therefore contains regions of higher
density, we are able to reproduce the observed HI gas fractions (and thus the
high quenched fraction and short quenching timescale) of Local Group
satellites, suggesting that a host halo with clumpy gas may be crucial for
quenching low-mass systems in Local Group-like (and more massive) host halos.Comment: updated version after review, now accepted to MNRAS; Accepted 2016
August 22. Received 2016 August 18; in original form 2016 June 2
Spatially embedded random networks
Many real-world networks analyzed in modern network theory have a natural spatial element; e.g., the Internet, social networks, neural networks, etc. Yet, aside from a comparatively small number of somewhat specialized and domain-specific studies, the spatial element is mostly ignored and, in particular, its relation to network structure disregarded. In this paper we introduce a model framework to analyze the mediation of network structure by spatial embedding; specifically, we model connectivity as dependent on the distance between network nodes. Our spatially embedded random networks construction is not primarily intended as an accurate model of any specific class of real-world networks, but rather to gain intuition for the effects of spatial embedding on network structure; nevertheless we are able to demonstrate, in a quite general setting, some constraints of spatial embedding on connectivity such as the effects of spatial symmetry, conditions for scale free degree distributions and the existence of small-world spatial networks. We also derive some standard structural statistics for spatially embedded networks and illustrate the application of our model framework with concrete examples
Aircraft measurements of electrified clouds at Kennedy Space Center, part 3
Flights made by the Special Purpose Test Vehicle for Atmospheric Research (SPTVAR) airplane during a second deployment to Florida during the summer of 1989 are discussed. The findings based on the data gathered are presented. The progress made during the second year of the project is discussed. The summer 1989 study was carried out with the support and guidance of Col. John Madura, Commander of Detachment 11, 2nd Weather Squadron, USAF, at Patrick Air Force Base (PAFB) and Cape Canaveral Air Force Station. The project goals were to develop and demonstrate techniques for measuring the electric field aloft and locating regions of charge during flight within and near clouds; to characterize the electric conditions that are presently identified as a threat to space launch vehicles; and to study the correlation between the electric field aloft and that at Kennedy Space Center's ground-based electric field mill array for a variety of electrified clouds
- …
