4,505 research outputs found
Optimized bolted joint
A method is disclosed for joining segments of the skin of an aircraft. The ends of the skin are positioned in close proximity or abutt each other. The skin is of constant thickness throughout the joint and is sandwiched between splice plates, which taper in thickness from the last to the first bolt rows in order to reduce the stiffness of the splice plate and thereby reduce the load transfer at the location where bypass loads are the highest
Critical joints in large composite aircraft structure
A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art
Large deviations in boundary-driven systems: Numerical evaluation and effective large-scale behavior
We study rare events in systems of diffusive fields driven out of equilibrium
by the boundaries. We present a numerical technique and use it to calculate the
probabilities of rare events in one and two dimensions. Using this technique,
we show that the probability density of a slowly varying configuration can be
captured with a small number of long wave-length modes. For a configuration
which varies rapidly in space this description can be complemented by a local
equilibrium assumption
Critical composite joint subcomponents: Analysis and test results
This program has been conducted to develop the technology for critical structural joints of a composite wing structure meeting design requirements for a 1990 commercial transport aircraft. A prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Load sharing between bolts in multirow joints was computed by a nonlinear analysis program (A4FJ) which was used both to assess the efficiency of different joint design concepts and to predict the strengths of large test articles representing a section from a wing root chord-wise splice. In most cases, the predictions were accurate to within a few percent of the test results. A highlight of these tests was the consistent ability to achieve gross-section failure strains on the order of 0.005 which represents a considerable improvement over the state of the art. The improvement was attained largely as the result of the better understanding of the load sharing in multirow joints provided by the analysis. The typical load intensity on the structural joints was about 40 to 45 thousand pound per inch in laminates having interspersed 37 1/2-percent 0-degree plies, 50-percent + or - 45-degrees plies and 12 1/2-percent 90-degrees plies. The composite material was Toray 300 fiber and Ciba-Geigy 914 resin, in the form of 0.010-inch thick unidirectional tape
Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV
A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay
channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7
TeV is presented. The data were collected at the LHC, with the CMS detector,
and correspond to an integrated luminosity of 4.6 inverse femtobarns. No
significant excess is observed above the background expectation, and upper
limits are set on the Higgs boson production cross section. The presence of the
standard model Higgs boson with a mass in the 270-440 GeV range is excluded at
95% confidence level.Comment: Submitted to JHE
Combined search for the quarks of a sequential fourth generation
Results are presented from a search for a fourth generation of quarks
produced singly or in pairs in a data set corresponding to an integrated
luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in
2011. A novel strategy has been developed for a combined search for quarks of
the up and down type in decay channels with at least one isolated muon or
electron. Limits on the mass of the fourth-generation quarks and the relevant
Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a
simple extension of the standard model with a sequential fourth generation of
fermions. The existence of mass-degenerate fourth-generation quarks with masses
below 685 GeV is excluded at 95% confidence level for minimal off-diagonal
mixing between the third- and the fourth-generation quarks. With a mass
difference of 25 GeV between the quark masses, the obtained limit on the masses
of the fourth-generation quarks shifts by about +/- 20 GeV. These results
significantly reduce the allowed parameter space for a fourth generation of
fermions.Comment: Replaced with published version. Added journal reference and DO
- …
