1,550 research outputs found
Universal Markovian reduction of Brownian particle dynamics
Non-Markovian processes can often be turned Markovian by enlarging the set of
variables. Here we show, by an explicit construction, how this can be done for
the dynamics of a Brownian particle obeying the generalized Langevin equation.
Given an arbitrary bath spectral density , we introduce an orthogonal
transformation of the bath variables into effective modes, leading stepwise to
a semi-infinite chain with nearest-neighbor interactions. The transformation is
uniquely determined by and defines a sequence
of residual spectral densities describing the
interaction of the terminal chain mode, at each step, with the remaining bath.
We derive a simple, one-term recurrence relation for this sequence, and show
that its limit is the quasi-Ohmic expression provided by the Rubin model of
dissipation. Numerical calculations show that, irrespective of the details of
, convergence is fast enough to be useful in practice for an effective
Markovian reduction of quantum dissipative dynamics
RNA Secondary Structures: Complex Statics and Glassy Dynamics
Models for RNA secondary structures (the topology of folded RNA) without
pseudo knots are disordered systems with a complex state-space below a critical
temperature. Hence, a complex dynamical (glassy) behavior can be expected, when
performing Monte Carlo simulation. Interestingly, in contrast to most other
complex systems, the ground states and the density of states can be computed in
polynomial time exactly using transfer matrix methods. Hence, RNA secondary
structure is an ideal model to study the relation between static/thermodynamic
properties and dynamics of algorithms. Also they constitute an ideal benchmark
system for new Monte Carlo methods.
Here we considered three different recent Monte Carlo approaches: entropic
sampling using flat histograms, optimized-weights ensembles, and ParQ, which
estimates the density of states from transition matrices.
These methods were examined by comparing the obtained density of states with
the exact results. We relate the complexity seen in the dynamics of the Monte
Carlo algorithms to static properties of the phase space by studying the
correlations between tunneling times, sampling errors, amount of meta-stable
states and degree of ultrametricity at finite temperature
Development and test results of a readout chip for the GERDA experiment
This paper describes the F-CSA104 architecture and its measurement results. The F-CSA104 is for γ spectroscopy with Ge detectors. It is a low noise, fully integrated, four channel XFAB 0.6μm CMOS technology ASIC, that has been developed for the GERDA experiment. Each channel contains a charge sensitive preamplifier (CSA) followed by a 11.7MHz differential line driver. It has been particularly designed to operate in liquid argon (T = 87K/-186°C) and to have a measuring sensitivity of 660e- with an ENC of 110e-, after offline filtering with 10μs shaping, when connected to a 30pF load. Special techniques are used to improve the SNR such as a large input PMOS FET, an integrated 500MΩ CSA feedback resistor and a noise degeneration drain resistor
RNA secondary structure design
We consider the inverse-folding problem for RNA secondary structures: for a
given (pseudo-knot-free) secondary structure find a sequence that has that
structure as its ground state. If such a sequence exists, the structure is
called designable. We implemented a branch-and-bound algorithm that is able to
do an exhaustive search within the sequence space, i.e., gives an exact answer
whether such a sequence exists. The bound required by the branch-and-bound
algorithm are calculated by a dynamic programming algorithm. We consider
different alphabet sizes and an ensemble of random structures, which we want to
design. We find that for two letters almost none of these structures are
designable. The designability improves for the three-letter case, but still a
significant fraction of structures is undesignable. This changes when we look
at the natural four-letter case with two pairs of complementary bases:
undesignable structures are the exception, although they still exist. Finally,
we also study the relation between designability and the algorithmic complexity
of the branch-and-bound algorithm. Within the ensemble of structures, a high
average degree of undesignability is correlated to a long time to prove that a
given structure is (un-)designable. In the four-letter case, where the
designability is high everywhere, the algorithmic complexity is highest in the
region of naturally occurring RNA.Comment: 11 pages, 10 figure
Influence of the detector's temperature on the quantum Zeno effect
In this paper we study the quantum Zeno effect using the irreversible model
of the measurement. The detector is modeled as a harmonic oscillator
interacting with the environment. The oscillator is subjected to the force,
proportional to the energy of the measured system. We use the Lindblad-type
master equation to model the interaction with the environment. The influence of
the detector's temperature on the quantum Zeno effect is obtained. It is shown
that the quantum Zeno effect becomes stronger (the jump probability decreases)
when the detector's temperature increases
Recommended from our members
A conceptual framework for studying collective reactions to events in location-based social media
Events are a core concept of spatial information, but location-based social media (LBSM) provide information on reactions to events. Individuals have varied degrees of agency in initiating, reacting to or modifying the course of events, and reactions include observations of occurrence, expressions containing sentiment or emotions, or a call to action. Key characteristics of reactions include referent events and information about who reacted, when, where and how. Collective reactions are composed of multiple individual reactions sharing common referents. They can be characterized according to the following dimensions: spatial, temporal, social, thematic and interlinkage. We present a conceptual framework, which allows characterization and comparison of collective reactions. For a thematically well-defined class of event such as storms, we can explore differences and similarities in collective attribution of meaning across space and time. Other events may have very complex spatio-temporal signatures (e.g. political processes such as Brexit or elections), which can be decomposed into series of individual events (e.g. a temporal window around the result of a vote). The purpose of our framework is to explore ways in which collective reactions to events in LBSM can be described and underpin the development of methods for analysing and understanding collective reactions to events
Performance and Radiation Tolerance of the Helix128-2.2 and 3.0 Readout Chips for the HERA-B Microstrip Detectors
- …
