1,973 research outputs found
Reflections on Tiles (in Self-Assembly)
We define the Reflexive Tile Assembly Model (RTAM), which is obtained from
the abstract Tile Assembly Model (aTAM) by allowing tiles to reflect across
their horizontal and/or vertical axes. We show that the class of directed
temperature-1 RTAM systems is not computationally universal, which is
conjectured but unproven for the aTAM, and like the aTAM, the RTAM is
computationally universal at temperature 2. We then show that at temperature 1,
when starting from a single tile seed, the RTAM is capable of assembling n x n
squares for n odd using only n tile types, but incapable of assembling n x n
squares for n even. Moreover, we show that n is a lower bound on the number of
tile types needed to assemble n x n squares for n odd in the temperature-1
RTAM. The conjectured lower bound for temperature-1 aTAM systems is 2n-1.
Finally, we give preliminary results toward the classification of which finite
connected shapes in Z^2 can be assembled (strictly or weakly) by a singly
seeded (i.e. seed of size 1) RTAM system, including a complete classification
of which finite connected shapes be strictly assembled by a "mismatch-free"
singly seeded RTAM system.Comment: New results which classify the types of shapes which can
self-assemble in the RTAM have been adde
The Power of Duples (in Self-Assembly): It's Not So Hip To Be Square
In this paper we define the Dupled abstract Tile Assembly Model (DaTAM),
which is a slight extension to the abstract Tile Assembly Model (aTAM) that
allows for not only the standard square tiles, but also "duple" tiles which are
rectangles pre-formed by the joining of two square tiles. We show that the
addition of duples allows for powerful behaviors of self-assembling systems at
temperature 1, meaning systems which exclude the requirement of cooperative
binding by tiles (i.e., the requirement that a tile must be able to bind to at
least 2 tiles in an existing assembly if it is to attach). Cooperative binding
is conjectured to be required in the standard aTAM for Turing universal
computation and the efficient self-assembly of shapes, but we show that in the
DaTAM these behaviors can in fact be exhibited at temperature 1. We then show
that the DaTAM doesn't provide asymptotic improvements over the aTAM in its
ability to efficiently build thin rectangles. Finally, we present a series of
results which prove that the temperature-2 aTAM and temperature-1 DaTAM have
mutually exclusive powers. That is, each is able to self-assemble shapes that
the other can't, and each has systems which cannot be simulated by the other.
Beyond being of purely theoretical interest, these results have practical
motivation as duples have already proven to be useful in laboratory
implementations of DNA-based tiles
Bounding the dimensions of rational cohomology groups
Let be an algebraically closed field of characteristic , and let
be a simple simply-connected algebraic group over that is defined and
split over the prime field . In this paper we investigate
situations where the dimension of a rational cohomology group for can be
bounded by a constant times the dimension of the coefficient module. We then
demonstrate how our results can be applied to obtain effective bounds on the
first cohomology of the symmetric group. We also show how, for finite Chevalley
groups, our methods permit significant improvements over previous estimates for
the dimensions of second cohomology groups.Comment: 13 page
OH far-infrared emission from low- and intermediate-mass protostars surveyed with Herschel-PACS
OH is a key species in the water chemistry of star-forming regions, because
its presence is tightly related to the formation and destruction of water. This
paper presents OH observations from 23 low- and intermediate-mass young stellar
objects obtained with the PACS integral field spectrometer on-board Herschel in
the context of the Water In Star-forming Regions with Herschel (WISH) key
program. Most low-mass sources have compact OH emission (< 5000 AU scale),
whereas the OH lines in most intermediate-mass sources are extended over the
whole PACS detector field-of-view (> 20000 AU). The strength of the OH emission
is correlated with various source properties such as the bolometric luminosity
and the envelope mass, but also with the OI and H2O emission. Rotational
diagrams for sources with many OH lines show that the level populations of OH
can be approximated by a Boltzmann distribution with an excitation temperature
at around 70 K. Radiative transfer models of spherically symmetric envelopes
cannot reproduce the OH emission fluxes nor their broad line widths, strongly
suggesting an outflow origin. Slab excitation models indicate that the observed
excitation temperature can either be reached if the OH molecules are exposed to
a strong far-infrared continuum radiation field or if the gas temperature and
density are sufficiently high. Using realistic source parameters and radiation
fields, it is shown for the case of Ser SMM1 that radiative pumping plays an
important role in transitions arising from upper level energies higher than 300
K. The compact emission in the low-mass sources and the required presence of a
strong radiation field and/or a high density to excite the OH molecules points
towards an origin in shocks in the inner envelope close to the protostar.Comment: Accepted for publication in Astronomy and Astrophysics. Abstract
abridge
Signal Transmission Across Tile Assemblies: 3D Static Tiles Simulate Active Self-Assembly by 2D Signal-Passing Tiles
The 2-Handed Assembly Model (2HAM) is a tile-based self-assembly model in
which, typically beginning from single tiles, arbitrarily large aggregations of
static tiles combine in pairs to form structures. The Signal-passing Tile
Assembly Model (STAM) is an extension of the 2HAM in which the tiles are
dynamically changing components which are able to alter their binding domains
as they bind together. For our first result, we demonstrate useful techniques
and transformations for converting an arbitrarily complex STAM tile set
into an STAM tile set where every tile has a constant, low amount of
complexity, in terms of the number and types of ``signals'' they can send, with
a trade off in scale factor.
Using these simplifications, we prove that for each temperature
there exists a 3D tile set in the 2HAM which is intrinsically universal for the
class of all 2D STAM systems at temperature (where the STAM does
not make use of the STAM's power of glue deactivation and assembly breaking, as
the tile components of the 2HAM are static and unable to change or break
bonds). This means that there is a single tile set in the 3D 2HAM which
can, for an arbitrarily complex STAM system , be configured with a
single input configuration which causes to exactly simulate at a scale
factor dependent upon . Furthermore, this simulation uses only two planes of
the third dimension. This implies that there exists a 3D tile set at
temperature in the 2HAM which is intrinsically universal for the class of
all 2D STAM systems at temperature . Moreover, we show that for each
temperature there exists an STAM tile set which is intrinsically
universal for the class of all 2D STAM systems at temperature ,
including the case where .Comment: A condensed version of this paper will appear in a special issue of
Natural Computing for papers from DNA 19. This full version contains proofs
not seen in the published versio
TESS Data Release Notes: Sector 20, DR27
This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 20 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics
TESS Data Release Notes: Sector 18 DR25
This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 18 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics
TESS Data Release Notes: Sector 9 DR11
This release note discusses the science data products produced by the Science Processing Operations Center at Ames Research Center from Sector 9 observations made with the TESS spacecraft and cameras as a means to document instrument performance and data characteristics
A Persistent Disk Wind in GRS 1915+105 with NICER
The bright, erratic black hole X-ray binary GRS 1915+105 has long been a
target for studies of disk instabilities, radio/infrared jets, and accretion
disk winds, with implications that often apply to sources that do not exhibit
its exotic X-ray variability. With the launch of NICER, we have a new
opportunity to study the disk wind in GRS 1915+105 and its variability on short
and long timescales. Here we present our analysis of 39 NICER observations of
GRS 1915+105 collected during five months of the mission data validation and
verification phase, focusing on Fe XXV and Fe XXVI absorption. We report the
detection of strong Fe XXVI in 32 (>80%) of these observations, with another
four marginal detections; Fe XXV is less common, but both likely arise in the
well-known disk wind. We explore how the properties of this wind depends on
broad characteristics of the X-ray lightcurve: mean count rate, hardness ratio,
and fractional RMS variability. The trends with count rate and RMS are
consistent with an average wind column density that is fairly steady between
observations but varies rapidly with the source on timescales of seconds. The
line dependence on spectral hardness echoes known behavior of disk winds in
outbursts of Galactic black holes; these results clearly indicate that NICER is
a powerful tool for studying black hole winds.Comment: Accepted for publication in ApJL. Comments welcom
Laser Ablation Mass Spectrometer (LAMS) as a Standoff Analyzer in Space Missions for Airless Bodies
A laser ablation mass spectrometer (LAMS) based on a time-of-flight (TOF) analyzer with adjustable drift length is proposed as a standoff elemental composition sensor for space missions to airless bodies. It is found that the use of a retarding potential analyzer in combination with a two-stage reflectron enables LAMS to be operated at variable drift length. For field-free drift lengths between 33 cm to 100 cm, at least unit mass resolution can be maintained solely by adjustment of internal voltages, and without resorting to drastic reductions in sensitivity. Therefore, LAMS should be able to be mounted on a robotic arm and analyze samples at standoff distances of up to several tens of cm, permitting high operational flexibility and wide area coverage of heterogeneous regolith on airless bodies
- …
