2,206 research outputs found
A New Approach to Time Domain Classification of Broadband Noise in Gravitational Wave Data
Broadband noise in gravitational wave (GW) detectors, also known as triggers,
can often be a deterrant to the efficiency with which astrophysical search
pipelines detect sources. It is important to understand their instrumental or
environmental origin so that they could be eliminated or accounted for in the
data. Since the number of triggers is large, data mining approaches such as
clustering and classification are useful tools for this task. Classification of
triggers based on a handful of discrete properties has been done in the past. A
rich information content is available in the waveform or 'shape' of the
triggers that has had a rather restricted exploration so far. This paper
presents a new way to classify triggers deriving information from both trigger
waveforms as well as their discrete physical properties using a sequential
combination of the Longest Common Sub-Sequence (LCSS) and LCSS coupled with
Fast Time Series Evaluation (FTSE) for waveform classification and the
multidimensional hierarchical classification (MHC) analysis for the grouping
based on physical properties. A generalized k-means algorithm is used with the
LCSS (and LCSS+FTSE) for clustering the triggers using a validity measure to
determine the correct number of clusters in absence of any prior knowledge. The
results have been demonstrated by simulations and by application to a segment
of real LIGO data from the sixth science run.Comment: 16 pages, 16 figure
Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity
We investigate the nature of the long-period radial velocity variations in
Alpha Tau first reported over 20 years ago. We analyzed precise stellar radial
velocity measurements for Alpha Tau spanning over 30 years. An examination of
the Halpha and Ca II 8662 spectral lines, and Hipparcos photometry was also
done to help discern the nature of the long-period radial velocity variations.
Our radial velocity data show that the long-period, low amplitude radial
velocity variations are long-lived and coherent. Furthermore, Halpha equivalent
width measurements and Hipparcos photometry show no significant variations with
this period. Another investigation of this star established that there was no
variability in the spectral line shapes with the radial velocity period. An
orbital solution results in a period of P = 628.96 +/- 0.90 d, eccentricity, e
= 0.10 +/- 0.05, and a radial velocity amplitude, K = 142.1 +/- 7.2 m/s.
Evolutionary tracks yield a stellar mass of 1.13 +/- 0.11 M_sun, which
corresponds to a minimum companion mass of 6.47 +/- 0.53 M_Jup with an orbital
semi-major axis of a = 1.46 +/- 0.27 AU. After removing the orbital motion of
the companion, an additional period of ~ 520 d is found in the radial velocity
data, but only in some time spans. A similar period is found in the variations
in the equivalent width of Halpha and Ca II. Variations at one-third of this
period are also found in the spectral line bisector measurements. The 520 d
period is interpreted as the rotation modulation by stellar surface structure.
Its presence, however, may not be long-lived, and it only appears in epochs of
the radial velocity data separated by 10 years. This might be due to an
activity cycle. The data presented here provide further evidence of a planetary
companion to Alpha Tau, as well as activity-related radial velocity variations.Comment: 18 pages, 14 figures. Accepted for publication in Astronomy and
Astrophysic
Autonomous clustering using rough set theory
This paper proposes a clustering technique that minimises the need for subjective
human intervention and is based on elements of rough set theory. The proposed algorithm is
unified in its approach to clustering and makes use of both local and global data properties to
obtain clustering solutions. It handles single-type and mixed attribute data sets with ease and
results from three data sets of single and mixed attribute types are used to illustrate the
technique and establish its efficiency
Deflection and Rotation of CMEs from Active Region 11158
Between the 13 and 16 of February 2011 a series of coronal mass ejections
(CMEs) erupted from multiple polarity inversion lines within active region
11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS)
flux rope model to determine the CME trajectory using both Solar Terrestrial
Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph
images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model
for nonradial CME dynamics driven by magnetic forces, to simulate the
deflection and rotation of the seven CMEs. We find good agreement between the
ForeCAT results and the reconstructed CME positions and orientations. The CME
deflections range in magnitude between 10 degrees and 30 degrees. All CMEs
deflect to the north but we find variations in the direction of the
longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with
both clockwise and counterclockwise rotations occurring. Three of the CMEs
begin with initial positions within 2 degrees of one another. These three CMEs
all deflect primarily northward, with some minor eastward deflection, and
rotate counterclockwise. Their final positions and orientations, however,
respectively differ by 20 degrees and 30 degrees. This variation in deflection
and rotation results from differences in the CME expansion and radial
propagation close to the Sun, as well as the CME mass. Ultimately, only one of
these seven CMEs yielded discernible in situ signatures near Earth, despite the
active region facing near Earth throughout the eruptions. We suggest that the
differences in the deflection and rotation of the CMEs can explain whether each
CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic
Statistical M-Estimation and Consistency in Large Deformable Models for Image Warping
The problem of defining appropriate distances between shapes or images and modeling the variability of natural images by group transformations is at the heart of modern image analysis. A current trend is the study of probabilistic and statistical aspects of deformation models, and the development of consistent statistical procedure for the estimation of template images. In this paper, we consider a set of images randomly warped from a mean template which has to be recovered. For this, we define an appropriate statistical parametric model to generate random diffeomorphic deformations in two-dimensions. Then, we focus on the problem of estimating the mean pattern when the images are observed with noise. This problem is challenging both from a theoretical and a practical point of view. M-estimation theory enables us to build an estimator defined as a minimizer of a well-tailored empirical criterion. We prove the convergence of this estimator and propose a gradient descent algorithm to compute this M-estimator in practice. Simulations of template extraction and an application to image clustering and classification are also provided
Propagation of an Earth-directed coronal mass ejection in three dimensions
Solar coronal mass ejections (CMEs) are the most significant drivers of
adverse space weather at Earth, but the physics governing their propagation
through the heliosphere is not well understood. While stereoscopic imaging of
CMEs with the Solar Terrestrial Relations Observatory (STEREO) has provided
some insight into their three-dimensional (3D) propagation, the mechanisms
governing their evolution remain unclear due to difficulties in reconstructing
their true 3D structure. Here we use a new elliptical tie-pointing technique to
reconstruct a full CME front in 3D, enabling us to quantify its deflected
trajectory from high latitudes along the ecliptic, and measure its increasing
angular width and propagation from 2-46 solar radii (approximately 0.2 AU).
Beyond 7 solar radii, we show that its motion is determined by an aerodynamic
drag in the solar wind and, using our reconstruction as input for a 3D
magnetohydrodynamic simulation, we determine an accurate arrival time at the
Lagrangian L1 point near Earth.Comment: 5 figures, 2 supplementary movie
Enteric dysbiosis and fecal calprotectin expression in premature infants.
BackgroundPremature infants often develop enteric dysbiosis with a preponderance of Gammaproteobacteria, which has been related to adverse clinical outcomes. We investigated the relationship between increasing fecal Gammaproteobacteria and mucosal inflammation, measured by fecal calprotectin (FC).MethodsStool samples were collected from very-low-birth weight (VLBW) infants at ≤2, 3, and 4 weeks' postnatal age. Fecal microbiome was surveyed using polymerase chain reaction amplification of the V4 region of 16S ribosomal RNA, and FC was measured by enzyme immunoassay.ResultsWe enrolled 45 VLBW infants (gestation 27.9 ± 2.2 weeks, birth weight 1126 ± 208 g) and obtained stool samples at 9.9 ± 3, 20.7 ± 4.1, and 29.4 ± 4.9 days. FC was positively correlated with the genus Klebsiella (r = 0.207, p = 0.034) and its dominant amplicon sequence variant (r = 0.290, p = 0.003), but not with the relative abundance of total Gammaproteobacteria. Klebsiella colonized the gut in two distinct patterns: some infants started with low Klebsiella abundance and gained these bacteria over time, whereas others began with very high Klebsiella abundance.ConclusionIn premature infants, FC correlated with relative abundance of a specific pathobiont, Klebsiella, and not with that of the class Gammaproteobacteria. These findings indicate a need to define dysbiosis at genera or higher levels of resolution
Kepler-47: A Transiting Circumbinary Multi-Planet System
We report the detection of Kepler-47, a system consisting of two planets
orbiting around an eclipsing pair of stars. The inner and outer planets have
radii 3.0 and 4.6 times that of the Earth, respectively. The binary star
consists of a Sun-like star and a companion roughly one-third its size,
orbiting each other every 7.45 days. With an orbital period of 49.5 days,
eighteen transits of the inner planet have been observed, allowing a detailed
characterization of its orbit and those of the stars. The outer planet's
orbital period is 303.2 days, and although the planet is not Earth-like, it
resides within the classical "habitable zone", where liquid water could exist
on an Earth-like planet. With its two known planets, Kepler-47 establishes that
close binary stars can host complete planetary systems.Comment: To appear on Science Express August 28, 11 pages, 3 figures, one
table (main text), 56 pages, 28 figures, 10 table
Five Kepler target stars that show multiple transiting exoplanet candidates
We present and discuss five candidate exoplanetary systems identified with
the Kepler spacecraft. These five systems show transits from multiple exoplanet
candidates. Should these objects prove to be planetary in nature, then these
five systems open new opportunities for the field of exoplanets and provide new
insights into the formation and dynamical evolution of planetary systems. We
discuss the methods used to identify multiple transiting objects from the
Kepler photometry as well as the false-positive rejection methods that have
been applied to these data. One system shows transits from three distinct
objects while the remaining four systems show transits from two objects. Three
systems have planet candidates that are near mean motion
commensurabilities---two near 2:1 and one just outside 5:2. We discuss the
implications that multitransiting systems have on the distribution of orbital
inclinations in planetary systems, and hence their dynamical histories; as well
as their likely masses and chemical compositions. A Monte Carlo study indicates
that, with additional data, most of these systems should exhibit detectable
transit timing variations (TTV) due to gravitational interactions---though none
are apparent in these data. We also discuss new challenges that arise in TTV
analyses due to the presence of more than two planets in a system.Comment: Accepted to Ap
"The Great Event of the Fortnight”: Steamship Rhythms and Colonial Communication
This paper engages with Tim Cresswell’s ‘contellations of mobility’ in order to contribute some understanding of historical maritime rhythms. The empirical focus is upon a steamship mail service in the post-emancipation Caribbean. In examining this communications network, it is stressed that while those managing the network valorised predictable efficiency, ‘friction’ was prized by mercantile groups at the steamers’ ports of call. Thus, the different aspects of mobility signified differently across the network, and this historical case study reinforces the resonance of slowness and stoppage time. The synchronisation of steamship arrivals with sociocultural norms in the Caribbean colonies also necessitated the adaptation of mail service rhythms. Through a focus on shipping operations, this paper proposes to temper our understanding of the role of steamship technology in empire. The influence of colonies on the metropole encompassed an alteration of the rhythms of imperial circulation, and it is within the maritime arena that these realities came into sharp focus
- …
