55,258 research outputs found

    Self-regulated black hole accretion, the M-sigma relation, and the growth of bulges in galaxies

    Full text link
    We argue that the velocity dispersions and masses of galactic bulges and spheroids are byproducts of the feedback that regulates rapid black hole growth in protogalaxies. We suggest that the feedback energy liberated by accretion must pass through the accreting material, in an energy-conserving flux close-in and a momentum-conserving flux further out. If the inflowing gas dominates the gravitational potential outside the Bondi radius, feedback from Eddington-limited accretion drives the density profile of the gas to that of a singular isothermal sphere. We find that the velocity dispersion associated with the isothermal potential, sigma, increases with time as the black hole mass M grows, in such a way that M is proportional to sigma^4. The coefficient of this proportionality depends on the radius at which the flow switches from energy conserving to momentum conserving, and gives the observed M-sigma relation if the transition occurs at ~100 Schwarzschild radii. We associate this transition with radiative cooling and show that bremsstrahlung, strongly boosted by inverse Compton scattering in a two-temperature (T_p >> T_e) plasma, leads to a transition at the desired radius. According to this picture, bulge masses M_b are insensitive to the virial masses of their dark matter haloes, but correlate linearly with black hole mass. Our analytic model also explains the M_b-sigma (Faber-Jackson) relation as a relic of black hole accretion. The model naturally explains why the M-sigma relation has less scatter than either the M-M_b (Magorrian) or the Faber-Jackson relation. It suggests that the M-sigma relation could extend down to very low velocity dispersions, and predicts that the relation should not evolve with redshift.Comment: 6 pages, no figures, submitted to Monthly Notices of the Royal Astronomical Societ

    Entropy "floor" and effervescent heating of intracluster gas

    Full text link
    Recent X-ray observations of clusters of galaxies have shown that the entropy of the intracluster medium (ICM), even at radii as large as half the virial radius, is higher than that expected from gravitational processes alone. This is thought to be the result of nongravitational processes influencing the physical state of the ICM. In this paper, we investigate whether heating by a central AGN can explain the distribution of excess entropy as a function of radius. The AGN is assumed to inject buoyant bubbles into the ICM, which heat the ambient medium by doing pdV work as they rise and expand. Several authors have suggested that this "effervescent heating" mechanism could allow the central regions of clusters to avoid the ``cooling catastrophe''. Here we study the effect of effervescent heating at large radii. Our calculations show that such a heating mechanism is able to solve the entropy problem. The only free parameters of the model are the time-averaged luminosity and the AGN lifetime. The results are mainly sensitive to the total energy injected into the cluster. Our model predicts that the total energy injected by AGN should be roughly proportional to the cluster mass. The expected correlation is consistent with a linear relation between the mass of the central black hole(s) and the mass of the cluster, which is reminiscent of the Magorrian relation between the black hole and bulge mass.Comment: accepted for Ap

    Orbital navigation, docking and obstacle avoidance as a form of three dimensional model-based image understanding

    Get PDF
    Range imagery from a laser scanner can be used to provide sufficient information for docking and obstacle avoidance procedures to be performed automatically. Three dimensional model-based computer vision algorithms in development can perform these tasks even with targets which may not be cooperative (that is, objects without special targets or markers to provide unambiguous points). Role, pitch, and yaw of a vehicle can be taken into account as image scanning takes place, so that these can be correlated when the image is converted from egocentric to world coordinated. Other attributes of the sensor, such as the registered reflectance and texture channels, provide additional data sources for algorithm robustness

    Shock temperatures in anorthite glass

    Get PDF
    Temperatures of CaAl2Si2O8 (anorthite glass) shocked to pressures between 48 and 117 GPa were measured in the range from 2500 to 5600 K, using optical pyrometry techniques. The pressure dependence of the shock temperatures deviates significantly from predictions based on a single high pressure phase. At least three phase transitions, at pressures of about 55, 85, and 100 GPa and with transition energies of about 0.5 MJ/kg each (approximately 1.5 MJ/kg total) are required to explain the shock temperature data. The phase transition at 100 GPa can possibly be identified with the stishovite melting transition. Theoretical models of the time dependence of the thermal radiation from the shocked anorthite based on the geometry of the experiment and the absorptive properties of the shocked material yields good agreement with observations, indicating that it is not necessary to invoke intrinsic time dependences to explain the data in many cases

    Self-Consistent Thermal Accretion Disk Corona Models for Compact Objects: I. Properties of the Corona and the Spectrum of Escaping Radiation

    Get PDF
    We present the properties of accretion disk corona (ADC) models, where the radiation field, the temperature, and the total opacity of the corona are determined self-consistently. We use a non-linear Monte Carlo code to perform the calculations. As an example, we discuss models where the corona is situated above and below a cold accretion disk with a plane-parallel (slab) geometry, similar to the model of Haardt and Maraschi. By Comptonizing the soft radiation emitted by the accretion disk, the corona is responsible for producing the high-energy component of the escaping radiation. Our models include the reprocessing of radiation in the accretion disk. Here, the photons either are Compton reflected or photo-absorbed, giving rise to fluorescent line emission and thermal emission. The self-consistent coronal temperature is determined by balancing heating (due to viscous energy dissipation) with Compton cooling, determined using the fully relativistic, angle-dependent cross-sections. The total opacity is found by balancing pair productions with annihilations. We find that, for a disk temperature kT_bb \lta 200 eV, these coronae are unable to have a self-consistent temperature higher than \sim 120 keV if the total optical depth is \gta 0.2, regardless of the compactness parameter of the corona and the seed opacity. This limitation corresponds to the angle-averaged spectrum of escaping radiation having a photon index \gta 1.8 within the 5 keV - 30 keV band. Finally, all models that have reprocessing features also predict a large thermal excess at lower energies. These constraints make explaining the X-ray spectra of persistent black hole candidates with ADC models very problematic.Comment: 15 pages, Latex, 9 .eps figures, uses emulateapj.sty (included). To be published in ApJ, October 1, 1997, Vol. 48

    Controlling the uncontrolled: Are there incidental experimenter effects on physiologic responding?

    Get PDF
    The degree to which experimenters shape participant behavior has long been of interest in experimental social science research. Here, we extend this question to the domain of peripheral psychophysiology, where experimenters often have direct, physical contact with participants, yet researchers do not consistently test for their influence. We describe analytic tools for examining experimenter effects in peripheral physiology. Using these tools, we investigate nine data sets totaling 1,341 participants and 160 experimenters across different roles (e.g., lead research assistants, evaluators, confederates) to demonstrate how researchers can test for experimenter effects in participant autonomic nervous system activity during baseline recordings and reactivity to study tasks. Our results showed (a) little to no significant variance in participants' physiological reactivity due to their experimenters, and (b) little to no evidence that three characteristics of experimenters that are well known to shape interpersonal interactions-status (using five studies with 682 total participants), gender (using two studies with 359 total participants), and race (in two studies with 554 total participants)-influenced participants' physiology. We highlight several reasons that experimenter effects in physiological data are still cause for concern, including the fact that experimenters in these studies were already restricted on a number of characteristics (e.g., age, education). We present recommendations for examining and reducing experimenter effects in physiological data and discuss implications for replication

    RXTE Observation of Cygnus X-1: Spectral Analysis

    Get PDF
    We present the results of the analysis of the broad-band spectrum of Cygnus X-1 from 3.0 to 200 keV, using data from a 10 ksec observation by the Rossi X-ray Timing Explorer. The spectrum can be well described phenomenologically by an exponentially cut-off power law with a photon index Gamma = 1.45 +/- 0.02 (a value considerably harder than typically found), e-folding energy E_fold = 162 +/- 9 keV, plus a deviation from a power law that formally can be modeled as a thermal blackbody with temperature kT_bb = 1.2 +/1 0.2 keV. Although the 3 - 30 keV portion of the spectrum can be fit with a reflected power law with Gamma = 1.81 +/- 0.01 and covering fraction f = 0.35 +/- 0.02, the quality of the fit is significantly reduced when the HEXTE data in the 30 - 100 keV range is included, as there is no observed hardening in the power law within this energy range. As a physical description of this system, we apply the accretion disc corona models of Dove, Wilms & Begelman (1997) --- where the temperature of the corona is determined self-consistently. A spherical corona with a total optical depth tau = 1.6 +/- 0.1 and an average temperature kT_c = 87 +/- 5 keV, surrounded by an exterior cold disc, does provide a good description of the data (reduced chi-squared = 1.55). These models deviate from the data by up to 7% in the 5 - 10 keV range, and we discuss possible reasons for these discrepancies. However, considering how successfully the spherical corona reproduces the 10 - 200 keV data, such ``photon-starved'' coronal geometries seem very promising for explaining the accretion processes of Cygnus X-1.Comment: Revised version (added content). 8 pages, 6 figures, 1 table.tex file, latex, uses mn.sty. Accepted for publication in MNRA

    RXTE Observation of Cygnus X-1: II. Timing Analysis

    Full text link
    We present timing analysis for a Rossi X-ray Timing Explorer observation of Cygnus X-1 in its hard/low state. This was the first RXTE observation of Cyg X-1 taken after it transited back to this state from its soft/high state. RXTE's large effective area, superior timing capabilities, and ability to obtain long, uninterrupted observations have allowed us to obtain measurements of the power spectral density (PSD), coherence function, and Fourier time lags to a decade lower in frequency and half a decade higher in frequency than typically was achieved with previous instruments. Notable aspects of our observations include a weak 0.005 Hz feature in the PSD coincident with a coherence recovery; a `hardening' of the high-frequency PSD with increasing energy; a broad frequency range measurement of the coherence function, revealing rollovers from unity coherence at both low and high frequency; and an accurate determination of the Fourier time lags over two and a half decades in frequency. As has been noted in previous similar observations, the time delay is approximately proportional to f^(-0.7), and at a fixed Fourier frequency the time delay of the hard X-rays compared to the softest energy channel tends to increase logarithmically with energy. Curiously, the 0.01-0.2 Hz coherence between the highest and lowest energy bands is actually slightly greater than the coherence between the second highest and lowest energy bands. We carefully describe all of the analysis techniques used in this paper, and we make comparisons of the data to general theoretical expectations. In a companion paper, we make specific comparisons to a Compton corona model that we have successfully used to describe the energy spectral data from this observation.Comment: To Be Published in the Astrophysical Journal. 18 pages. Uses emulatepaj.st

    Characterization of Alkali Metal Dispensers and Non-Evaporable Getter Pumps in Ultra-High Vacuum Systems for Cold Atomic Sensors

    Full text link
    A glass ultrahigh vacuum chamber with rubidium alkali metal dispensers and non-evaporable getter pumps has been developed and used to create a cold atomic sample in a chamber that operates with only passive vacuum pumps. The ion-mass spectrum of evaporated gases from the alkali metal dispenser has been recorded as a function of dispenser current. The efficacy of the non-evaporable getter pumps in promoting and maintaining vacuum has been characterized by observation of the Rb vapor optical absorption on the D2 transition at 780 nm and vacuum chamber pressure rate of rise tests. We have demonstrated a sample of laser-cooled Rb atoms in this chamber when isolated and operating without active vacuum pumps
    corecore