30,188 research outputs found
Multiphoton Coincidence Spectroscopy
We extend the analysis of photon coincidence spectroscopy beyond bichromatic
excitation and two-photon coincidence detection to include multichromatic
excitation and multiphoton coincidence detection. Trichromatic excitation and
three-photon coincidence spectroscopy are studied in detail, and we identify an
observable signature of a triple resonance in an atom-cavity system.Comment: 6 page, REVTeXs, 6 Postscript figures. The abstract appeared in the
Proceedings of ACOLS9
Entangled Coherent State Qubits in an Ion Trap
We show how entangled qubits can be encoded as entangled coherent states of
two-dimensional centre-of-mass vibrational motion for two ions in an ion trap.
The entangled qubit state is equivalent to the canonical Bell state, and we
introduce a proposal for entanglement transfer from the two vibrational modes
to the electronic states of the two ions in order for the Bell state to be
detected by resonance fluorescence shelving methods.Comment: 4 pages, No figures, accepted to PRA, minor chang
Quantum dynamics of the nonlinear rotator and the effects of continual spin measurement
The quantum and classical dynamics of the nonlinear oscillator are contrasted by comparing the evolution of the quantum Q function with that of a similar classical probability distribution. The quantum nonlinear rotator is shown to generate a superposition of two distinct coherent states from a coherent-state input. Measurements of the angular-momentum components and the signature of a superposition state are discussed. The effects of a continual measurement of one angular-momentum component are introduced into the model, and its effects on quantum coherences are shown to degrade the quantum coherence effects. We present a quantum optical model that obeys the nonlinear rotator dynamics and can generate superpositions of SU(2) coherent states of the two-mode electromagnetic field
Major Galaxy Mergers and the Growth of Supermassive Black Holes in Quasars
Despite observed strong correlations between central supermassive black holes
(SMBHs) and star-formation in galactic nuclei, uncertainties exist in our
understanding of their coupling. We present observations of the ratio of
heavily-obscured to unobscured quasars as a function of cosmic epoch up to z~3,
and show that a simple physical model describing mergers of massive, gas-rich
galaxies matches these observations. In the context of this model, every
obscured and unobscured quasar represent two distinct phases that result from a
massive galaxy merger event. Much of the mass growth of the SMBH occurs during
the heavily-obscured phase. These observations provide additional evidence for
a causal link between gas-rich galaxy mergers, accretion onto the nuclear SMBH
and coeval star formation.Comment: Accepted for publication in Science. Published by Science Express on
March 25th. 17 pages, 5 figures, including supplemental online materia
New Results from a Near-Infrared Search for Hidden Broad-Line Regions in Ultraluminous Infrared Galaxies
This paper reports the latest results from a near-infrared search for hidden
broad-line regions (BLRs: FWHM >~ 2,000 km/s) in ultraluminous infrared
galaxies (ULIGs). The new sample contains thirty-nine ULIGs from the 1-Jy
sample selected for their lack of BLRs at optical wavelengths. The results from
this new study are combined with those from our previous optical and
near-infrared surveys to derive the fraction of all ULIGs with optical or
near-infrared signs of genuine AGN activity (either a BLR or [Si VI] emission).
Comparisons of the dereddened emission-line luminosities of the optical or
obscured BLRs detected in the ULIGs of the 1-Jy sample with those of optical
quasars indicate that the obscured AGN/quasar in ULIGs is the main source of
energy in at least 15 -- 25% of all ULIGs in the 1-Jy sample. This fraction is
30 -- 50% among ULIGs with L_ir > 10^{12.3} L_sun. These results are compatible
with those from recent mid-infrared spectroscopic surveys carried out with ISO.
(abridged)Comment: 40 pages including 10 figures and 3 tables (Table 3 should be printed
in landscape mode
Partitioning Complex Networks via Size-constrained Clustering
The most commonly used method to tackle the graph partitioning problem in
practice is the multilevel approach. During a coarsening phase, a multilevel
graph partitioning algorithm reduces the graph size by iteratively contracting
nodes and edges until the graph is small enough to be partitioned by some other
algorithm. A partition of the input graph is then constructed by successively
transferring the solution to the next finer graph and applying a local search
algorithm to improve the current solution.
In this paper, we describe a novel approach to partition graphs effectively
especially if the networks have a highly irregular structure. More precisely,
our algorithm provides graph coarsening by iteratively contracting
size-constrained clusterings that are computed using a label propagation
algorithm. The same algorithm that provides the size-constrained clusterings
can also be used during uncoarsening as a fast and simple local search
algorithm.
Depending on the algorithm's configuration, we are able to compute partitions
of very high quality outperforming all competitors, or partitions that are
comparable to the best competitor in terms of quality, hMetis, while being
nearly an order of magnitude faster on average. The fastest configuration
partitions the largest graph available to us with 3.3 billion edges using a
single machine in about ten minutes while cutting less than half of the edges
than the fastest competitor, kMetis
Ordered Measurements of Permutationally-Symmetric Qubit Strings
We show that any sequence of measurements on a permutationally-symmetric
(pure or mixed) multi-qubit string leaves the unmeasured qubit substring also
permutationally-symmetric. In addition, we show that the measurement
probabilities for an arbitrary sequence of single-qubit measurements are
independent of how many unmeasured qubits have been lost prior to the
measurement. Our results are valuable for quantum information processing of
indistinguishable particles by post-selection, e.g. in cases where the results
of an experiment are discarded conditioned upon the occurrence of a given event
such as particle loss. Furthermore, our results are important for the design of
adaptive-measurement strategies, e.g. a series of measurements where for each
measurement instance, the measurement basis is chosen depending on prior
measurement results.Comment: 13 page
Differential Evolution for Many-Particle Adaptive Quantum Metrology
We devise powerful algorithms based on differential evolution for adaptive
many-particle quantum metrology. Our new approach delivers adaptive quantum
metrology policies for feedback control that are orders-of-magnitude more
efficient and surpass the few-dozen-particle limitation arising in methods
based on particle-swarm optimization. We apply our method to the
binary-decision-tree model for quantum-enhanced phase estimation as well as to
a new problem: a decision tree for adaptive estimation of the unknown bias of a
quantum coin in a quantum walk and show how this latter case can be realized
experimentally.Comment: Fig. 2(a) is the cover of Physical Review Letters Vol. 110 Issue 2
- …
