1,576 research outputs found
Mars Ascent Vehicle Hybrid Propulsion Development
Hybrid propulsion is being investigated as a propulsion method for a possible Mars Ascent Vehicle (MAV) application. MAV is part of a proposed larger Mars Sample Return (MSR) campaign plan to bring samples from Mars to earth for examination. The Mars Ascent Vehicle would launch Mars surface samples found and packaged by the Mars 2020 mission to orbit around Mars. This version of hybrid propulsion is based on a wax based solid fuel, called SP7A, and a Mixed Oxides of Nitrogen oxidizer, MON-25. SP7 is a new fuel formulation developed by Space Propulsion Group and was modified for this application to be resistant to Mars temperature extremes and modified again to lower the regression rate to become SP7A. MON-25 was chosen for its low freezing temperature. Due to cost constraints, MON-3 was the oxidizer used during testing through 2018. In 2019, full scale hybrid testing with MON-25 commenced in Mojave, CA by Whittinghill Aerospace. One flight motor will be subjected to thermal cycling in a vacuum and later fired in a vacuum to demonstrate the proposed Liquid Injection Thrust Vector Control system performance at White Sands Test Facility (WSTF). In addition, there will be MON-25 characterization work done at Purdue University and WSTF. Additional testing of subscale and full scale motors will be conducted with MON-3 with fuel grain stress, fuel grain support and case design test objectives by Space Propulsion Group Inc. of Butte, MT. This paper documents some of the testing, issues and accomplishments with the MAV hybrid propulsion option that is being considered (along with a two-stage solid propulsion option)
Recommended from our members
The Distance To The Hyades Cluster Based On Hubble Space Telescope Fine Guidance Sensor Parallaxes
Trigonometric parallax observations made with the Hubble Space Telescope (HST) Fine Guidance Sensor (FGS) 3 of seven Hyades members in six fields of view have been analyzed along with their proper motions to determine the distance to the cluster. Knowledge of the convergent point and mean proper motion of the Hyades is critical to the derivation of the distance to the center of the cluster. Depending on the choice of the proper-motion system, the derived cluster center distance varies by 9%. Adopting a reference distance of 46.1 pc or m - M = 3.32, which is derived from the ground-based parallaxes in the General Catalogue of Trigonometric Stellar Parallaxes (1995 edition), the FK5/PPM proper-motion system yields a distance 4% larger, while the Hanson system yields a distance 2% smaller. The HST FGS parallaxes reported here yield either a 14% or 5% larger distance, depending on the choice of the proper-motion system. Orbital parallaxes (Torres et al.) yield an average distance 4% larger than the reference distance. The variation in the distance derived from the HST data illustrates the importance of the proper-motion system and the individual proper motions to the derivation of the distance to the Hyades center; therefore, a full utilization of the HST FGS parallaxes awaits the establishment of an accurate and consistent proper-motion system.NASA HST GTO, HF-1042.01-93A, HF-1046.01-93A, NAS526555Astronom
Principles behind evaluations of national food and beverage taxes and other regulatory efforts
Non-PRIFPRI3; ISIPHN
Quantum Communication Protocol Employing Weak Measurements
We propose a communication protocol exploiting correlations between two
events with a definite time-ordering: a) the outcome of a {\em weak
measurement} on a spin, and b) the outcome of a subsequent ordinary measurement
on the spin. In our protocol, Alice, first generates a "code" by performing
weak measurements on a sample of N spins.
The sample is sent to Bob, who later performs a post-selection by measuring
the spin along either of two certain directions. The results of the
post-selection define the "key', which he then broadcasts publicly. Using both
her previously generated code and this key, Alice is able to infer the {\em
direction} chosen by Bob in the post-selection. Alternatively, if Alice
broadcasts publicly her code, Bob is able to infer from the code and the key
the direction chosen by Alice for her weak measurement. Two possible
experimental realizations of the protocols are briefly mentioned.Comment: 5 pages, Revtex, 1 figure. A second protocol is added, where by a
similar set of weak measurement Alice can send, instead of receiving, a
message to Bob. The security question for the latter protocol is discusse
BICEP2 II: Experiment and Three-Year Data Set
We report on the design and performance of the BICEP2 instrument and on its
three-year data set. BICEP2 was designed to measure the polarization of the
cosmic microwave background (CMB) on angular scales of 1 to 5 degrees
(=40-200), near the expected peak of the B-mode polarization signature of
primordial gravitational waves from cosmic inflation. Measuring B-modes
requires dramatic improvements in sensitivity combined with exquisite control
of systematics. The BICEP2 telescope observed from the South Pole with a 26~cm
aperture and cold, on-axis, refractive optics. BICEP2 also adopted a new
detector design in which beam-defining slot antenna arrays couple to
transition-edge sensor (TES) bolometers, all fabricated on a common substrate.
The antenna-coupled TES detectors supported scalable fabrication and
multiplexed readout that allowed BICEP2 to achieve a high detector count of 500
bolometers at 150 GHz, giving unprecedented sensitivity to B-modes at degree
angular scales. After optimization of detector and readout parameters, BICEP2
achieved an instrument noise-equivalent temperature of 15.8 K sqrt(s). The
full data set reached Stokes Q and U map depths of 87.2 nK in square-degree
pixels (5.2 K arcmin) over an effective area of 384 square degrees within
a 1000 square degree field. These are the deepest CMB polarization maps at
degree angular scales to date. The power spectrum analysis presented in a
companion paper has resulted in a significant detection of B-mode polarization
at degree scales.Comment: 30 pages, 24 figure
Optical followup of galaxy clusters detected by the South Pole Telescope
The South Pole Telescope (SPT) is a 10 meter telescope operating at mm
wavelengths. It has recently completed a three-band survey covering 2500 sq.
degrees. One of the survey's main goals is to detect galaxy clusters using
Sunyaev-Zeldovich effect and use these clusters for a variety of cosmological
and astrophysical studies such as the dark energy equation of state, the
primordial non-gaussianity and the evolution of galaxy populations. Since 2005,
we have been engaged in a comprehensive optical and near-infrared followup
program (at wavelengths between 0.4 and 5 {\mu}m) to image high-significance
SPT clusters, to measure their photometric redshifts, and to estimate the
contamination rate of the candidate lists. These clusters are then used for
various cosmological and astrophysical studies.Comment: For TAUP 2011 proceeding
Astrometry with Hubble Space Telescope: A Parallax of the Fundamental Distance Calibrator RR Lyrae
We present an absolute parallax and relative proper motion for the
fundamental distance scale calibrator, RR Lyr. We obtain these with astrometric
data from FGS 3, a white-light interferometer on HST. We find mas. Spectral classifications and VRIJHKTM and DDO51 photometry of
the astrometric reference frame surrounding RR Lyr indicate that field
extinction is low along this line of sight. We estimate =0.07\pm0.03 for
these reference stars. The extinction suffered by RR Lyr becomes one of the
dominant contributors to the uncertainty in its absolute magnitude. Adopting
the average field absorption, =0.07 \pm 0.03, we obtain M_V^{RR} = 0.61
^{-0.11}_{+0.10}. This provides a distance modulus for the LMC, m-M = 18.38 -
18.53^{-0.11}_{+0.10} with the average extinction-corrected magnitude of RR Lyr
variables in the LMC, , remaining a significant uncertainty. We compare
this result to more than 80 other determinations of the distance modulus of the
LMC.Comment: Several typos corrected. To appear in The Astronomical Journal,
January 200
Detection of B-mode Polarization in the Cosmic Microwave Background with Data from the South Pole Telescope
Gravitational lensing of the cosmic microwave background generates a curl
pattern in the observed polarization. This "B-mode" signal provides a measure
of the projected mass distribution over the entire observable Universe and also
acts as a contaminant for the measurement of primordial gravity-wave signals.
In this Letter we present the first detection of gravitational lensing B modes,
using first-season data from the polarization-sensitive receiver on the South
Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal
by combining E-mode polarization measured by SPTpol with estimates of the
lensing potential from a Herschel-SPIRE map of the cosmic infrared background.
We compare this template to the B modes measured directly by SPTpol, finding a
non-zero correlation at 7.7 sigma significance. The correlation has an
amplitude and scale-dependence consistent with theoretical expectations, is
robust with respect to analysis choices, and constitutes the first measurement
of a powerful cosmological observable.Comment: Two additional null tests, matches version published in PR
Performance and on-sky optical characterization of the SPTpol instrument
In January 2012, the 10m South Pole Telescope (SPT) was equipped with a
polarization-sensitive camera, SPTpol, in order to measure the polarization
anisotropy of the cosmic microwave background (CMB). Measurements of the
polarization of the CMB at small angular scales (~several arcminutes) can
detect the gravitational lensing of the CMB by large scale structure and
constrain the sum of the neutrino masses. At large angular scales (~few
degrees) CMB measurements can constrain the energy scale of Inflation. SPTpol
is a two-color mm-wave camera that consists of 180 polarimeters at 90 GHz and
588 polarimeters at 150 GHz, with each polarimeter consisting of a dual
transition edge sensor (TES) bolometers. The full complement of 150 GHz
detectors consists of 7 arrays of 84 ortho-mode transducers (OMTs) that are
stripline coupled to two TES detectors per OMT, developed by the TRUCE
collaboration and fabricated at NIST. Each 90 GHz pixel consists of two
antenna-coupled absorbers coupled to two TES detectors, developed with Argonne
National Labs. The 1536 total detectors are read out with digital
frequency-domain multiplexing (DfMUX). The SPTpol deployment represents the
first on-sky tests of both of these detector technologies, and is one of the
first deployed instruments using DfMUX readout technology. We present the
details of the design, commissioning, deployment, on-sky optical
characterization and detector performance of the complete SPTpol focal plane.Comment: 15 pages, 6 figures. Conference: SPIE Astronomical Telescopes and
Instrumentation 201
South Pole Telescope Software Systems: Control, Monitoring, and Data Acquisition
We present the software system used to control and operate the South Pole
Telescope. The South Pole Telescope is a 10-meter millimeter-wavelength
telescope designed to measure anisotropies in the cosmic microwave background
(CMB) at arcminute angular resolution. In the austral summer of 2011/12, the
SPT was equipped with a new polarization-sensitive camera, which consists of
1536 transition-edge sensor bolometers. The bolometers are read out using 36
independent digital frequency multiplexing (\dfmux) readout boards, each with
its own embedded processors. These autonomous boards control and read out data
from the focal plane with on-board software and firmware. An overall control
software system running on a separate control computer controls the \dfmux
boards, the cryostat and all other aspects of telescope operation. This control
software collects and monitors data in real-time, and stores the data to disk
for transfer to the United States for analysis
- …
