17,733 research outputs found
How High are the Giants' Shoulders: An Empirical Assessment of Knowledge Spillovers and Creative Destruction in a Model of Economic Growth
The pace of industrial innovation and growth is shaped by many forces that interact in complicated ways. Profit-maximizing firms pursue new ideas to obtain market power, but the pursuit of the same goal by other means that even successful inventions art eventually superseded by others; this known as creative destruction. New ideas not only yield new goods but also enrich the stock of knowledge of society and its potential to produce new ideas. To a great extent this knowledge is non-excludable, making research and inventions the source of powerful spillovers. The extent of spillovers depends on the rate at which new ideas outdate old ones, that is on the endogenous technological obsolescence of ideas, and on the rate at which knowledge diffuses among inventors. In this paper we build a simple model that allows us to organize our search for the empirical strength of the concepts emphasized above. We then use data on patents and patent citations as empirical counterparts of new ideas and knowledge spillovers, respectively, to estimate the model parameters. We find estimates of the annual rate of creative destruction in the range of 2 to 7 percent for the decade of the 1970s, which rates for individual sectors as high as 25 percent. For technological obsolescence, we find an increase over the century from about 3 percent per year to about 12 percent per year in 1990, with a noticeable plateau in the l970s. We find the rate of diffusion of knowledge to be quite rapid, with the mean lag between I and 2 years. Lastly, we find that the potency of spillovers from old ideas to new knowledge generation (as evidenced by patent citation rate) has been declining over the century: the resulting decline in the effective public stock of knowledge available to new inventors is quite consistent with the observed decline in the average private productivity of research inputs
On the recovery of ISW fluctuations using large-scale structure tracers and CMB temperature and polarization anisotropies
In this work we present a method to extract the signal induced by the
integrated Sachs-Wolfe (ISW) effect in the cosmic microwave background (CMB).
It makes use of the Linear Covariance-Based filter introduced by Barreiro et
al., and combines CMB data with any number of large-scale structure (LSS)
surveys and lensing information. It also exploits CMB polarization to reduce
cosmic variance. The performance of the method has been thoroughly tested with
simulations taking into account the impact of non-ideal conditions such as
incomplete sky coverage or the presence of noise. In particular, three galaxy
surveys are simulated, whose redshift distributions peak at low (), intermediate () and high redshift (). The
contribution of each of the considered data sets as well as the effect of a
mask and noise in the reconstructed ISW map is studied in detail. When
combining all the considered data sets (CMB temperature and polarization, the
three galaxy surveys and the lensing map), the proposed filter successfully
reconstructs a map of the weak ISW signal, finding a perfect correlation with
the input signal for the ideal case and around 80 per cent, on average, in the
presence of noise and incomplete sky coverage. We find that including CMB
polarization improves the correlation between input and reconstruction although
only at a small level. Nonetheless, given the weakness of the ISW signal, even
modest improvements can be of importance. In particular, in realistic
situations, in which less information is available from the LSS tracers, the
effect of including polarisation is larger. For instance, for the case in which
the ISW signal is recovered from CMB plus only one survey, and taking into
account the presence of noise and incomplete sky coverage, the improvement in
the correlation coefficient can be as large as 10 per cent.Comment: 17 pages, 15 figures, accepted for publication in MNRA
General study of superscaling in quasielastic and reactions using the relativistic impulse approximation
The phenomenon of superscaling for quasielastic lepton induced reactions at
energies of a few GeV is investigated within the framework of the relativistic
impulse approximation. A global analysis of quasielastic inclusive electron and
charged-current neutrino scattering reactions on nuclei is presented. Scaling
and superscaling properties are shown to emerge from both types of processes.
The crucial role played by final state interactions is evaluated by using
different approaches. The asymmetric shape presented by the experimental
scaling function, with a long tail in the region of positive values of the
scaling variable, is reproduced when the interaction in the final state between
the knockout nucleon and the residual nucleus is described within the
relativistic mean field approach. The impact of gauge ambiguities and off-shell
effects in the scaling function is also analyzed.Comment: 34 pages, 14 figures, accepted in Phys. Rev. C. Section II has been
shortene
Quasielastic Charged Current Neutrino-nucleus Scattering
We provide integrated cross sections for quasielastic charged-current
neutrino-nucleus scattering. Results evaluated using the phenomenological
scaling function extracted from the analysis of experimental data are
compared with those obtained within the framework of the relativistic impulse
approximation. We show that very reasonable agreement is reached when a
description of final-state interactions based on the relativistic mean field is
included. This is consistent with previous studies of differential cross
sections which are in accord with the universality property of the superscaling
function.Comment: 5 pages, 3 figures, to be published in Phys. Rev. Let
Relativistic descriptions of final-state interactions in charged-current quasielastic neutrino-nucleus scattering at MiniBooNE kinematics
The results of two relativistic models with different descriptions of the
final-state interactions are compared with the MiniBooNE data of
charged-current quasielastic cross sections. The relativistic mean field model
uses the same potential for the bound and ejected nucleon wave functions. In
the relativistic Green's function (RGF) model the final-state interactions are
described in the inclusive scattering consistently with the exclusive
scattering using the same complex optical potential. The RGF results describe
the experimental data for total cross-sections without the need to modify the
nucleon axial mass.Comment: 5 pages 3 figure
- …
