424 research outputs found
La ville dans la politique et dans la société : entre clientélismes et innovations démocratiques (Brésil)
Recommended from our members
The structure of blocks with a Klein four defect group
We prove Erdmann’s conjecture [16] stating that every block with a Klein four defect group has a simple module with trivial source, and deduce from this that Puig’s finiteness conjecture holds for source algebras of blocks with a Klein four defect group. The proof uses the classification of finite simple groups
Recommended from our members
Atlantic overturning in decline?
Global ocean circulation is an important factor in climate variability and change. In particular, changes in the strength of the Atlantic meridional overturning circulation (AMOC) have been implicated in ancient climate events, as well as in recent climate anomalies such as the rapid warming of the North Atlantic Ocean in the mid-1990s. A series of moored current meters and temperature sensors deployed in the Atlantic at 26° N known as the RAPID-MOCHA array has been used to monitor the strength of meridional overturning since 2004. The data indicate a decline in this strength over the period 2004–20123. Here, using additional observations and climate model simulations we suggest that this measured decline is not merely a short-term fluctuation, but is part of a substantial reduction in meridional overturning occurring on a decadal timescale
Recommended from our members
Exploring the impact of CMIP5 model biases on the simulation of North Atlantic decadal variability
Instrumental observations, palaeo-proxies, and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NASPG). However, a poorly sampled observational record and a diversity of model behaviours mean that the precise nature and mechanisms of this variability are unclear. Here, we analyse an exceptionally large multi-model ensemble of 42 present-generation climate models to test whether NASPG mean state biases systematically affect the representation of decadal variability. Temperature and salinity biases in the Labrador Sea co-vary and influence whether density variability is controlled by temperature or salinity variations. Ocean horizontal resolution is a good predictor of the biases and the location of the dominant dynamical feedbacks within the NASPG. However, we find no link to the spectral characteristics of the variability. Our results suggest that the mean state and mechanisms of variability within the NASPG are not independent. This represents an important caveat for decadal predictions using anomaly-assimilation methods
HW/SW Co-design and Prototyping Approach for Embedded Smart Camera: ADAS Case Study
In 1968, Volkswagen integrated an electronic circuit as a new control fuel injection system, called the “Little Black Box”, it is considered as the first embedded system in the automotive industry. Currently, automobile constructors integrate several embedded systems into any of their new model vehicles. Behind these automobile’s electronics systems, a sophisticated Hardware/Software (HW/SW) architecture, which is based on heterogeneous components, and multiple CPUs is built. At present, they are more oriented toward visionbased systems using tiny embedded smart camera. This visionbased system in real time aspects represents one of the most challenging issues, especially in the domain of automobile’s applications. On the design side, one of the optimal solutions adopted by embedded systems designer for system performance, is to associate CPUs and hardware accelerators in the same design, in order to reduce the computational burden on the CPU and to speed-up the data processing. In this paper, we present a hardware platform-based design approach for fast embedded smart Advanced Driver Assistant System (ADAS) design and prototyping, as an alternative for the pure time-consuming simulation technique. Based on a Multi-CPU/FPGA platform, we introduced a new methodology/flow to design the different HW and SW parts of the ADAS system. Then, we shared our experience in designing and prototyping a HW/SW vision based on smart embedded system as an ADAS that helps to increase the safety of car’s drivers. We presented a real HW/SW prototype of the vision ADAS based on a Zynq FPGA. The system detects the fatigue/drowsiness state of the driver by monitoring the eyes closure and generates a real time alert. A new HW Skin Segmentation step to locate the eyes/face is proposed. Our new approach migrates the skin segmentation step from processing system (SW) to programmable logic (HW) taking the advantage of High-Level Synthesis (HLS) tool flow to accelerate the implementation, and the prototyping of the Vision based ADAS on a hardware platform
Improved efficacy of ciprofloxacin administered in polyethylene glycol-coated liposomes for treatment of Klebsiella pneumoniae pneumonia in rats.
Animal and clinical data show that high ratios of the area under the
concentration-time curve and the peak concentration in blood to the MIC of
fluoroquinolones for a given pathogen are associated with a favorable
outcome. The present study investigated whether improvement of the
therapeutic potential of ciprofloxacin could be achieved by encapsulation
in polyethylene glycol (PEG)-coated long-circulating sustained-release
liposomes. In a rat model of unilateral Klebsiella pneumoniae pneumonia
(MIC = 0.1 microg/ml), antibiotic was administered at 12- or 24-h
intervals at twofold-increasing doses. A treatment period of 3 days was
started 24 h after inoculation of the left lung, when the bacterial count
had increased 1,000-fold and some rats had positive blood cultures. The
infection was fatal within 5 days in untreated rats. Administration of
ciprofloxacin in the liposomal form resulted in delayed ciprofloxacin
clearance and increased and prolonged ciprofloxacin concentrations in
blood and tissues. The ED(50) (dosage that results in 50% survival) of
liposomal ciprofloxacin was 3.3 mg/kg of body weight/day given once daily,
and that of free ciprofloxacin was 18.9 mg/kg/day once daily or 5.1
mg/kg/day twice daily. The ED(90) of liposomal ciprofloxacin was 15.0
mg/kg/day once daily compared with 36.0 mg/kg/day twice daily for free
ciprofloxacin; 90% survival could not be achieved with free ciprofloxacin
given once daily. In summary, the therapeutic efficacy of liposomal
ciprofloxacin was superior to that of ciprofloxacin in the free form.
PEG-coated liposomal ciprofloxacin was well tolerated in relatively high
doses, permitting once daily administration with relatively low
ciprofloxacin clearance and without compromising therapeutic efficacy
Eddy-wave duality in a rotating flow
A series of experiments with rotating, electromagnetically forced, turbulent flows were carried out at the Sapienza University of Rome to investigate the eddy-wave duality in flows with a β-effect and the electromagnetic force acting in the westward direction. When the β-effect is significant, i.e., as in planetary atmospheric and oceanic circulations, nonlinear eddy/wave interactions facilitate flow self-organization into zonal patterns in which Rossby waves and westward propagating cyclonic and anticyclonic eddies coexist. Upon time averaging, eddies disappear and the flow pattern transforms into a system of alternating zonal jets. What is the relationship between eddies, jets, and Rossby waves? To address this issue, we designed a laboratory experiment in which a westward zonal flow is produced by applying an electromagnetic small-scale forcing to a thin layer of a rotating fluid. In order to investigate different levels of flow zonality and a wider range of zonal modes, we varied the forcing intensity and the area of the forced sector. The zonal flow evolves as a system of westward propagating, large scale, cyclonic, and anticyclonic eddies. The propagation speed of the traveling structures was calculated from the Hovmöller diagrams of both the streamfunction and the centroids of clusters of different types (cyclonic and anticyclonic eddy cores and saddle point neighborhoods) obtained via an Okubo-Weiss analysis. The results were compared with the theoretical phase speed of a Rossby wave. The correspondence between these two characteristics at the radius of maximum shear corresponding to the epicenter of the barotropic instability is quite good, particularly after including the radial variation of the zonal velocity in the β-term. It is concluded that the Rossby waves and eddies are inseparable as the former maintain the instability that sustains the latter. This symbiosis visually resembles the Rossby soliton
Revealing the intensity of turbulent energy transfer in planetary atmospheres
Images of the giant planets Jupiter and Saturn show highly turbulent storms and swirling Q23 clouds that reflect the intensity of turbulence in their atmospheres.
Quantifying planetary turbulence is inaccessible to conventional tools, however, since they require large quantities of spatially and temporally resolved data.
Here we show, using experiments, observations, and simulations, that potential vorticity (PV) is a straightforward and universal diagnostic that can be used to estimate turbulent energy transfer in a stably stratified atmosphere.
We use the conservation of PV to define a length scale, LM, representing a typical distance over which PV is mixed by planetary turbulence. LM increases as the turbulent intensity increases and can be estimated from any latitudinal PV profile.
Using this principle, we estimate LM within Jupiter's and Saturn's tropospheres, showing for the first time that turbulent energy transfer in Saturn's atmosphere is four times less intense than Jupiter'
Recommended from our members
Causes of the regional variability in observed sea level, sea surface temperature and ocean colour over the period 1993-2011
We analyse the regional variability in observed sea surface height (SSH), sea surface temperature (SST) and ocean colour (OC) from the ESA Climate Change Initiative (CCI) datasets over the period 1993-2011. The analysis focuses on the signature of the ocean large-scale climate fluctuations driven by the atmospheric forcing and do not address the mesoscale variability. We use the ECCO version 4 ocean reanalysis to unravel the role of ocean transport and surface buoyancy fluxes in the observed SSH, SST and OC variability. We show that the SSH regional variability is dominated by the steric effect (except at high latitude) and is mainly shaped by ocean heat transport divergences with some contributions from the surface heat fluxes forcing that can be significant regionally (confirming earlier results). This is in contrast with the SST regional variability, which is the result of the compensation of surface heat fluxes by ocean heat transport in the mixed layer and arises from small departures around this background balance. Bringing together the results of SSH and SST analyses, we show that SSH and SST bear some common variability. This is because both SSH and SST variability show significant contributions from the surface heat fluxes forcing. It is evidenced by the high correlation between SST and buoyancy forced SSH almost everywhere in the ocean except at high latitude. OC, which is determined by phytoplankton biomass, is governed by the availability of light and nutrients that essentially depend on climate fluctuations. For this reason OC show significant correlation with SST and SSH. We show that the correlation with SST display the same pattern as the correlation with SSH with a negative correlation in the tropics and subtropics and a positive correlation at high latitude. We discuss the reasons for this pattern
Recommended from our members
An ensemble of eddy-permitting global ocean reanalyses from the MyOcean project
A set of four eddy-permitting global ocean reanalyses produced in the framework of the MyOcean project have been compared over the altimetry period 1993–2011. The main differences among the reanalyses used here come from the data assimilation scheme implemented to control the ocean state by inserting reprocessed observations of sea surface temperature (SST), in situ temperature and salinity profiles, sea level anomaly and sea-ice concentration. A first objective of this work includes assessing the interannual variability and trends for a series of parameters, usually considered in the community as essential ocean variables: SST, sea surface salinity, temperature and salinity averaged over meaningful layers of the water column, sea level, transports across pre-defined sections, and sea ice parameters. The eddy-permitting nature of the global reanalyses allows also to estimate eddy kinetic energy. The results show that in general there is a good consistency between the different reanalyses. An intercomparison against experiments without data assimilation was done during the MyOcean project and we conclude that data assimilation is crucial for correctly simulating some quantities such as regional trends of sea level as well as the eddy kinetic energy. A second objective is to show that the ensemble mean of reanalyses can be evaluated as one single system regarding its reliability in reproducing the climate signals, where both variability and uncertainties are assessed through the ensemble spread and signal-to-noise ratio. The main advantage of having access to several reanalyses differing in the way data assimilation is performed is that it becomes possible to assess part of the total uncertainty. Given the fact that we use very similar ocean models and atmospheric forcing, we can conclude that the spread of the ensemble of reanalyses is mainly representative of our ability to gauge uncertainty in the assimilation methods. This uncertainty changes a lot from one ocean parameter to another, especially in global indices. However, despite several caveats in the design of the multi-system ensemble, the main conclusion from this study is that an eddy-permitting multi-system ensemble approach has become mature and our results provide a first step towards a systematic comparison of eddy-permitting global ocean reanalyses aimed at providing robust conclusions on the recent evolution of the oceanic state
- …
