1,114 research outputs found
Zero-Temperature Properties of the Quantum Dimer Model on the Triangular Lattice
Using exact diagonalizations and Green's function Monte Carlo simulations, we
have studied the zero-temperature properties of the quantum dimer model on the
triangular lattice on clusters with up to 588 sites. A detailed comparison of
the properties in different topological sectors as a function of the cluster
size and for different cluster shapes has allowed us to identify different
phases, to show explicitly the presence of topological degeneracy in a phase
close to the Rokhsar-Kivelson point, and to understand finite-size effects
inside this phase. The nature of the various phases has been further
investigated by calculating dimer-dimer correlation functions. The present
results confirm and complement the phase diagram proposed by Moessner and
Sondhi on the basis of finite-temperature simulations [Phys. Rev. Lett. {\bf
86}, 1881 (2001)].Comment: 10 pages, 16 figure
Evidence for a GABAergic system in rodent and human testis: Local GABA production and GABA receptors
The major neurotransmitter of the central nervous system, gamma-aminobutyric acid (GABA), exerts its actions through GABA(A), GABA(B) and GABA(C) receptors. GABA and GABA receptors are, however, also present in several non-neural tissues, including the endocrine organs pituitary, pancreas and testis. In the case of the rat testis, GABA appears to be linked to the regulation of steroid synthesis by Leydig cells via GABA(A) receptors, but neither testicular sources of GABA, nor the precise nature of testicular GABA receptors are fully known. We examined these points in rat, mouse, hamster and human testicular samples. RT-PCR followed by sequencing showed that the GABA-synthesizing enzymes glutamate decarboxylase (GAD) 65 and/or GAD67, as well as the vesicular GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT) are expressed. Testicular GAD in the rat was shown to be functionally active by using a GAD assay, and Western blot analysis confirmed the presence of GAD65 and GAD67. Interstitial cells, most of which are Leydig cells according to their location and morphological characteristics, showed positive immunoreaction for GAD and VIAAT/VGAT proteins. In addition, several GABA(A) receptor subunits (alpha1-3, beta1-3, gamma1-3), as well as GABAB receptor subunits R1 and R2, were detected by RT-PCR. Western blot analysis confirmed the results for GABA(A) receptor subunits beta2/3 in the rat, and immunohistochemistry identified interstitial Leydig cells to possess immunoreactive GABA(A) receptor subunits beta2/3 and alpha1. The presence of GABA(A) receptor subunit alpha1 mRNA in interstitial cells of the rat testis was further shown after laser microdissection followed by RT-PCR analysis. In summary, these results describe molecular details of the components of an intratesticular GABAergic system expressed in the endocrine compartment of rodent and human testes. While the physiological significance of this peripheral neuroendocrine system conserved throughout species remains to be elucidated, its mere presence in humans suggests the possibility that clinically used drugs might be able to interfere with testicular function. Copyright (C) 2003 S. Karger AG, Basel
Hole-depletion of ladders in SrCuO induced by correlation effects
The hole distribution in SrCuO is studied by low
temperature polarization dependent O K Near-Edge X-ray Absorption Fine
Structure measurements and state of the art electronic structure calculations
that include core-hole and correlation effects in a mean-field approach.
Contrary to all previous analysis, based on semi-empirical models, we show that
correlations and antiferromagnetic ordering favor the strong chain
hole-attraction. For the remaining small number of holes accommodated on
ladders, leg-sites are preferred to rung-sites. The small hole affinity of
rung-sites explains naturally the 1D - 2D cross-over in the phase diagram of
(La,Y,Sr,Ca)CuOComment: 6 pages, 8 figure
Green Function Monte Carlo with Stochastic Reconfiguration: an effective remedy for the sign problem disease
A recent technique, proposed to alleviate the ``sign problem disease'', is
discussed in details. As well known the ground state of a given Hamiltonian
can be obtained by applying the imaginary time propagator to a
given trial state for large imaginary time and sampling
statistically the propagated state . However
the so called ``sign problem'' may appear in the simulation and such
statistical propagation would be practically impossible without employing some
approximation such as the well known ``fixed node'' approximation (FN). This
method allows to improve the FN dynamic with a systematic correction scheme.
This is possible by the simple requirement that, after a short imaginary time
propagation via the FN dynamic, a number of correlation functions can be
further constrained to be {\em exact} by small perturbation of the FN
propagated state, which is free of the sign problem. By iterating this scheme
the Monte Carlo average sign, which is almost zero when there is sign problem,
remains stable and finite even for large . The proposed algorithm is
tested against the exact diagonalization results available on finite lattice.
It is also shown in few test cases that the dependence of the results upon the
few parameters entering the stochastic technique can be very easily controlled,
unless for exceptional cases.Comment: 44 pages, RevTeX + 5 encaplulated postscript figure
Phonon dispersion and lifetimes in MgB2
We measure phonon dispersion and linewidth in a single crystal of MgB_2 along
the Gamma-A, Gamma-M and A-L directions using inelastic X-Ray scattering. We
use Density Functional Theory to compute the effect of both electron-phonon
coupling and anharmonicity on the linewidth, obtaining excellent agreement with
experiment. Anomalous broadening of the E_2g phonon mode is found all along
Gamma-A. The dominant contribution to the linewidth is always the
electron-phonon coupling.Comment: 4 pages, 3 figure
Effects of phase transitions in devices actuated by the electromagnetic vacuum force
We study the influence of the electromagnetic vacuum force on the behaviour
of a model device based on materials, like germanium tellurides, that undergo
fast and reversible metal-insulator transitions on passing from the crystalline
to the amorphous phase. The calculations are performed at finite temperature
and fully accounting for the behaviour of the material dielectric functions.
The results show that the transition can be exploited to extend the distance
and energy ranges under which the device can be operated without undergoing
stiction phenomena. We discuss the approximation involved in adopting the
Casimir expression in simulating nano- and micro- devices at finite
temperature
K-edge X-ray absorption spectra in transition metal oxides beyond the single particle approximation: shake-up many body effects
The near edge structure (XANES) in K-edge X-ray absorption spectroscopy (XAS)
is a widely used tool for studying electronic and local structure in materials.
The precise interpretation of these spectra with the help of calculations is
hence of prime importance, especially for the study of correlated materials
which have a complicated electronic structure per se. The single particle
approach, for example, has generally limited itself to the dominant dipolar
cross-section. It has long been known however that effects beyond this approach
should be taken into account, both due to the inadequacy of such calculations
when compared to experiment and the presence of shake-up many-body satellites
in core-level photoemission spectra of correlated materials. This effect should
manifest itself in XANES spectra and the question is firstly how to account for
it theoretically and secondly how to verify it experimentally. By using
state-of-the-art first principles electronic structure calculations and 1s
photoemission measurements we demonstrate that shake-up many-body effects are
present in K-edge XAS dipolar spectra of NiO, CoO and CuO at all energy scales.
We show that shake-up effects can be included in K-edge XAS spectra in a simple
way by convoluting the single-particle first-principles calculations including
core-hole effects with the 1s photoemission spectra. We thus describe all
features appearing in the XAS dipolar cross-section of NiO and CoO and obtain a
dramatic improvement with respect to the single-particle calculation in CuO.
These materials being prototype correlated magnetic oxides, our work points to
the presence of shake-up effects in K-edge XANES of most correlated transition
metal compounds and shows how to account for them, paving the way to a precise
understanding of their electronic structure.Comment: 6 pages, 4 picture
Immunohistochemical detection of macrophage migration inhibitory factor in fetal and adult bovine epididymis: Release by the apocrine secretion mode?
Originally defined as a lymphokine inhibiting the random migration of macrophages, the macrophage migration inhibitory factor (MIF) is an important mediator of the host response to infection. Beyond its function as a classical cytokine, MIF is currently portrayed as a multifunctional protein with growth-regulating properties present in organ systems beyond immune cells. In previous studies, we detected substantial amounts of MIF in the rat epididymis and epididymal spermatozoa, where it appears to play a role during post-testicular sperm maturation and the acquisition of fertilization ability. To explore its presence in other species not yet examined in this respect, we extended the range of studies to the bull. Using a polyclonal antibody raised against MIF purified from bovine eye lenses, we detected MIF in the epithelium of the adult bovine epididymis with the basal cells representing a prominently stained cell type. A distinct accumulation of MIF at the apical cell pole of the epithelial cells and in membranous vesicles localized in the lumen of the epididynnal duct was obvious. In the fetal bovine epididymis, we also detected MIF in the epithelium, whereas MIF accumulation was evident at the apical cell surface and in apical protrusions. By immuno-electron microscopy of the adult bovine epididymis, we localized MIF in apical protrusions of the epithelial cells and in luminal membrane-bound vesicles that were found in close proximity to sperm cells. Although the precise origin of the MIF-containing vesicles remains to be delineated, our morphological observations support the hypothesis that they become detached from the apical surface of the epididymal epithelial cells. Additionally, an association of MIF with the outer dense fibers of luminal spermatozoa was demonstrated. Data obtained in this study suggest MIF release by an apocrine secretion mode in the bovine epididymis. Furthermore, MIF localized in the basal cells of the epithelium and in the connective tissue could be responsible for regulating the migration of macrophages in order to avoid contact of immune cells with spermatozoa that carry a wide range of potent antigens. Copyright (c) 2006 S. Karger AG, Basel
Metals with Small Electron Mean-Free Path: Saturation versus Escalation of Resistivity
Resistivity of metals is commonly observed either to 'escalate' beyond the
Ioffe-Regel limit (mean free path l equal to lattice constant a) or to
'saturate' at this point. It is argued that neither behavior is
well-understood, and that 'escalation' is not necessarily more mysterious than
'saturation.'Comment: 3 pages with 3 embedded figures. This article is intended for the
Zacchary Fisk festschrift, which will be published in Physica
Electrical resistivity at large temperatures: Saturation and lack thereof
Many transition metal compounds show saturation of the resistivity at high
temperatures, T, while the alkali-doped fullerenes and the high-Tc cuprates are
usually considered to show no saturation. We present a model of transition
metal compounds, showing saturation, and a model of alkali-doped fullerenes,
showing no saturation. To analyze the results we use the f-sum rule, which
leads to an approximate upper limit for the resistivity at large T. For some
systems and at low T, the resistivity increases so rapidly that this upper
limit is approached for experimental T. The resistivity then saturates. For a
model of transition metal compounds with weakly interacting electrons, the
upper limit corresponds to a mean free path consistent with the Ioffe-Regel
condition. For a model of the high Tc cuprates with strongly interacting
electrons, however, the upper limit is much larger than the Ioffe-Regel
condition suggests. Since this limit is not exceeded by experimental data, the
data are consistent with saturation also for the cuprates. After "saturation"
the resistivity usually grows slowly. For the alkali-doped fullerenes,
"saturation" can be considered to have happened already for T=0, due to
orientational disorder. For these systems, however, the resistivity grows so
rapidly after "saturation" that this concept is meaningless. This is due to the
small band width and to the coupling to the level energies of the important
phonons.Comment: 22 pages, RevTeX, 19 eps figures, additional material available at
http://www.mpi-stuttgart.mpg.de/andersen/fullerene
- …
