1,378 research outputs found
On-board processing satellite network architecture and control study
For satellites to remain a vital part of future national and international communications, system concepts that use their inherent advantages to the fullest must be created. Network architectures that take maximum advantage of satellites equipped with onboard processing are explored. Satellite generations must accommodate various services for which satellites constitute the preferred vehicle of delivery. Such services tend to be those that are widely dispersed and present thin to medium loads to the system. Typical systems considered are thin and medium route telephony, maritime, land and aeronautical radio, VSAT data, low bit rate video teleconferencing, and high bit rate broadcast of high definition video. Delivery of services by TDMA and FDMA multiplexing techniques and combinations of the two for individual and mixed service types are studied. The possibilities offered by onboard circuit switched and packet switched architectures are examined and the results strongly support a preference for the latter. A detailed design architecture encompassing the onboard packet switch and its control, the related demand assigned TDMA burst structures, and destination packet protocols for routing traffic are presented. Fundamental onboard hardware requirements comprising speed, memory size, chip count, and power are estimated. The study concludes with identification of key enabling technologies and identifies a plan to develop a POC model
New zebrafish models of neurodegeneration
In modern biomedicine, the increasing need to develop experimental models to further our understanding of disease conditions and delineate innovative treatments has found in the zebrafish (Danio rerio) an experimental model, and indeed a valuable asset, to close the gap between in vitro and in vivo assays. Translation of ideas at a faster pace is vital in the field of neurodegeneration, with the attempt to slow or prevent the dramatic impact on the society's welfare being an essential priority. Our research group has pioneered the use of zebrafish to contribute to the quest for faster and improved understanding and treatment of neurodegeneration in concert with, and inspired by, many others who have primed the study of the zebrafish to understand and search for a cure for disorders of the nervous system. Aware of the many advantages this vertebrate model holds, here, we present an update on the recent zebrafish models available to study neurodegeneration with the goal of stimulating further interest and increasing the number of diseases and applications for which they can be exploited. We shall do so by citing and commenting on recent breakthroughs made possible via zebrafish, highlighting their benefits for the testing of therapeutics and dissecting of disease mechanisms
Stress dependent thermal pressurization of a fluid-saturated rock
Temperature increase in saturated porous materials under undrained conditions
leads to thermal pressurization of the pore fluid due to the discrepancy
between the thermal expansion coefficients of the pore fluid and of the solid
matrix. This increase in the pore fluid pressure induces a reduction of the
effective mean stress and can lead to shear failure or hydraulic fracturing.
The equations governing the phenomenon of thermal pressurization are presented
and this phenomenon is studied experimentally for a saturated granular rock in
an undrained heating test under constant isotropic stress. Careful analysis of
the effect of mechanical and thermal deformation of the drainage and pressure
measurement system is performed and a correction of the measured pore pressure
is introduced. The test results are modelled using a non-linear
thermo-poro-elastic constitutive model of the granular rock with emphasis on
the stress-dependent character of the rock compressibility. The effects of
stress and temperature on thermal pressurization observed in the tests are
correctly reproduced by the model
Co-opetition models for governing professional football
In recent years, models for co-creating value in a business-to-business context have
often been examined with the aim of studying the strategies implemented by and
among organisations for competitive and co-operative purposes. The traditional
concepts of competition and co-operation between businesses have now evolved,
both in terms of the sector in which the businesses operate and in terms of the type
of goods they produce.
Many researchers have, in recent times, investigated the determinants that can
influence the way in which the model of co-opetition can be applied to the football
world. Research interest lies in the particular features of what makes a good football.
In this paper, the aim is to conduct an analysis of the rules governing the “football
system”, while also looking at the determinants of the demand function within
football entertainment. This entails applying to football match management the
co-opetition model, a recognised model that combines competition and co-operation
with the view of creating and distributing value. It can, therefore, be said that, for a
spectator, watching sport is an experience of high suspense, and this suspense, in turn,
depends upon the degree of uncertainty in the outcome. It follows that the rules
ensuring that both these elements can be satisfied are a fertile ground for co-operation
between clubs, as it is in the interest of all stakeholders to offer increasingly more
attractive football, in comparison with other competing products. Our end purpose is
to understand how co-opetition can be achieved within professional football
Development of a biosensor for urea assay based on amidase inhibition, using an ion-selective electrode
A biosensor for urea has been developed based on the observation that urea is a powerful active-site inhibitor of amidase, which catalyzes the hydrolysis of amides such as acetamide to produce ammonia and the corresponding organic acid. Cell-free extract from Pseudomonas aeruginosa was the source of amidase (acylamide hydrolase, EC 3.5.1.4) which was immobilized on a polyethersulfone membrane in the presence of glutaraldehyde; anion-selective electrode for ammonium ions was used for biosensor development. Analysis of variance was used for optimization of the biosensorresponse and showed that 30 mu L of cell-free extract containing 7.47 mg protein mL(-1), 2 mu L of glutaraldehyde (5%, v/v) and 10 mu L of gelatin (15%, w/v) exhibited the highest response. Optimization of other parameters showed that pH 7.2 and 30 min incubation time were optimum for incubation ofmembranes in urea. The biosensor exhibited a linear response in the range of 4.0-10.0 mu M urea, a detection limit of 2.0 mu M for urea, a response timeof 20 s, a sensitivity of 58.245 % per mu M urea and a storage stability of over 4 months. It was successfully used for quantification of urea in samples such as wine and milk; recovery experiments were carried out which revealed an average substrate recovery of 94.9%. The urea analogs hydroxyurea, methylurea and thiourea inhibited amidase activity by about 90%, 10% and 0%, respectively, compared with urea inhibition
Collaborative dynamic decision making: a case study from B2B supplier selection
The problem of supplier selection can be easily modeled as a multiple-criteria decision making (MCDM) problem: businesses express their preferences with respect to suppliers, which can then be ranked and selected. This approach has two major pitfalls: first, it does not consider a dynamic scenario, in which suppliers and their ratings are constantly changing; second, it only addressed the problem from the point of view of a single business, and cannot be easily applied when considering more than one business. To overcome these problems, we introduce a method for supplier selection that builds upon the dynamic MCDM framework of Campanella and Ribeiro [1] and, by means of a linear programming model, can be used in the case of multiple collaborating businesses plan- ning their next batch of orders together.Fundação para a Ciência e a Tecnologia, Portugal, under contract CONT DOUT/49/UNINOVA/0/5902/1/200
HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa
The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells
Liquefaction Characteristics of Undisturbed Soils
Undrained cyclic triaxial tests were performed on undisturbed samples of natural soil deposits in order to investigate some of the factors affecting its liquefaction characteristics. It was shown that when the cyclic deviator stress is normalized with respect to major principal effective stress the number of cycles to liquefaction is not affected by sample size, consolidation stress, anisotropic consolidation, and grain size and density variations. However, liquefaction resistance was markedly increased by increasing over-consolidation ratio and aging. Also, sample disturbance of loose soils results in an increase, or unconservative measurement, of liquefaction resistance
Reduction of the ATPase inhibitory factor 1 (IF1) leads to visual impairment in vertebrates
In vertebrates, mitochondria are tightly preserved energy producing organelles, which sustain nervous system development and function. The understanding of proteins that regulate their homoeostasis in complex animals is therefore critical and doing so via means of systemic analysis pivotal to inform pathophysiological conditions associated with mitochondrial deficiency. With the goal to decipher the role of the ATPase inhibitory factor 1 (IF1) in brain development, we employed the zebrafish as elected model reporting that the Atpif1a−/− zebrafish mutant, pinotage (pnttq209), which lacks one of the two IF1 paralogous, exhibits visual impairment alongside increased apoptotic bodies and neuroinflammation in both brain and retina. This associates with increased processing of the dynamin-like GTPase optic atrophy 1 (OPA1), whose ablation is a direct cause of inherited optic atrophy. Defects in vision associated with the processing of OPA1 are specular in Atpif1−/− mice thus confirming a regulatory axis, which interlinks IF1 and OPA1 in the definition of mitochondrial fitness and specialised brain functions. This study unveils a functional relay between IF1 and OPA1 in central nervous system besides representing an example of how the zebrafish model could be harnessed to infer the activity of mitochondrial proteins during development
- …
