1,764 research outputs found
Room temperature self-assembly of mixed nanoparticles into complex material systems and devices
The ability to manufacture nanomaterials with complex and structured
composition using otherwise incompatible materials increasingly underpins the
next generation of technologies. This is translating into growing efforts
integrating a wider range of materials onto key technology platforms1 - in
photonics, one such platform is silica, a passive, low loss and robust medium
crucial for efficient optical transport2. Active functionalisation, either
through added gain or nonlinearity, is mostly possible through the integration
of active materials3, 4. The high temperatures used in manufacturing of silica
waveguides, unfortunately, make it impossible to presently integrate many
organic and inorganic species critical to achieving this extended
functionality. Here, we demonstrate the fabrication of novel waveguides and
devices made up of complex silica based materials using the self-assembly of
nanoparticles. In particular, the room temperature fabrication of silica
microwires integrated with organic dyes (Rhodamine B) and single photon
emitting nanodiamonds is presented.Comment: Key words: nanotechnology, nanoparticles, self-assembly, quantum
science, singel photon emitters, telecommunications, sensing, new materials,
integration of incompatible materials, silica, glass, breakthrough scienc
Development of sports turf systems suitable for Irish conditions.
End of Project ReportThe principal objective of the study was to establish scientific data in relation to the
nutritional requirements and best management practice for golf greens constructed to the
United States Golf Association (USGA) 1973 specification under Irish conditions.
The game of golf is one of the biggest sports industries in the world. Income from golf
tourism in Ireland has increased from £73 million in 1994 to £180 million in 1998. Good
quality turfgrass is required to underpin the promotion of golf tourism.
Traditionally, golf greens on Irish golf courses were constructed from local materials and
vary from green to green within a given golf course and also between different golf courses.
In recent years there is a perception that the quality of putting surfaces is superior on greens
constructed to the USGA specification. In addition, greens constructed to this specification
are similar one to the other and location to location. The principal features of the USGA
1973 specification could be summarised as follows: (1) A network of drainage pipes
installed in the underground soil covered with a carpet of peat gravel; (2) A blinding layer
of specifically graded sand placed on the peat gravel; (3) A root zone mixture of graded
sand (80%) and graded peat moss (20%) by volume. The particle size of the component
layers must comply to the exact specification in terms of size, diameter and shape. As sands
contain no nutrients, the management of greens constructed mainly of sand is more exacting
than the traditional soil constructed greens. The results from this project confirmed this
assumption.
Three major objectives were researched in this project: (a) the effect of micro nutrients,
when applied or omitted, on the quality and growth of grass on a green surface; (b) the
encroachment of Poa annua (annual meadow grass) onto the green; and (c) the comparison
of two nitrogen top dressing programmes on sand greens. The detailed results are given in
the text and in the conclusions of this report.European
Union Structural Funds (EAGGF
The distribution of dark and luminous matter in the unique galaxy cluster merger Abell 2146
Abell 2146 ( = 0.232) consists of two galaxy clusters undergoing a major merger. The system was discovered in previous work, where two large shock fronts were detected using the , consistent with a merger close to the plane of the sky, caught soon after first core passage. A weak gravitational lensing analysis of the total gravitating mass in the system, using the distorted shapes of distant galaxies seen with Advanced Camera for Surveys - Wide Field Channel on , is presented. The highest peak in the reconstruction of the projected mass is centred on the brightest cluster galaxy (BCG) in Abell 2146-A. The mass associated with Abell 2146-B is more extended. Bootstrapped noise mass reconstructions show the mass peak in Abell 2146-A to be consistently centred on the BCG. Previous work showed that BCG-A appears to lag behind an X-ray cool core; although the peak of the mass reconstruction is centred on the BCG, it is also consistent with the X-ray peak given the resolution of the weak lensing mass map. The best-fitting mass model with two components centred on the BCGs yields = 1.1 × 10 and 3 × 10 M for Abell 2146-A and Abell 2146-B, respectively, assuming a mass concentration parameter of = 3.5 for each cluster. From the weak lensing analysis, Abell 2146-A is the primary halo component, and the origin of the apparent discrepancy with the X-ray analysis where Abell 2146-B is the primary halo is being assessed using simulations of the merger
Predicting Graph Categories from Structural Properties
Complex networks are often categorized according to the underlying phenomena that they represent such as molecular interactions, re-tweets, and brain activity. In this work, we investigate the problem of predicting the category (domain) of arbitrary networks. This includes complex networks from different domains as well as synthetically generated graphs from five different network models. A classification accuracy of 96.6% is achieved using a random forest classifier with both real and synthetic networks. This work makes two important findings. First, our results indicate that complex networks from various domains have distinct structural properties that allow us to predict with high accuracy the category of a new previously unseen network. Second, synthetic graphs are trivial to classify as the classification model can predict with near-certainty the network model used to generate it. Overall, the results demonstrate that networks drawn from different domains (and network models) are trivial to distinguish using only a handful of simple structural properties
X-ray bright active galactic nuclei in massive galaxy clusters III: New insights into the triggering mechanisms of cluster AGN
We present the results of a new analysis of the X-ray selected Active
Galactic Nuclei (AGN) population in the vicinity of 135 of the most massive
galaxy clusters in the redshift range of 0.2 < z < 0.9 observed with Chandra.
With a sample of more than 11,000 X-ray point sources, we are able to measure,
for the first time, evidence for evolution in the cluster AGN population beyond
the expected evolution of field AGN. Our analysis shows that overall number
density of cluster AGN scales with the cluster mass as .
There is no evidence for the overall number density of cluster member X-ray AGN
depending on the cluster redshift in a manner different than field AGN, nor
there is any evidence that the spatial distribution of cluster AGN (given in
units of the cluster overdensity radius r_500) strongly depends on the cluster
mass or redshift. The scaling relation we measure is
consistent with theoretical predictions of the galaxy merger rate in clusters,
which is expected to scale with the cluster velocity dispersion, , as or . This consistency suggests that AGN in
clusters may be predominantly triggered by galaxy mergers, a result that is
further corroborated by visual inspection of Hubble images for 23
spectroscopically confirmed cluster member AGN in our sample. A merger-driven
scenario for the triggering of X-ray AGN is not strongly favored by studies of
field galaxies, however, suggesting that different mechanisms may be primarily
responsible for the triggering of cluster and field X-ray AGN.Comment: 21 Pages, 8 figures, 5 tables. Submitted to MNRAS. Comments are
welcome, and please request Steven Ehlert for higher resolution figure
Probing the extreme realm of AGN feedback in the massive galaxy cluster, RX J1532.9+3021
We present a detailed Chandra, XMM-Newton, VLA and HST analysis of one of the
strongest cool core clusters known, RX J1532.9+3021 (z=0.3613). Using new, deep
90 ks Chandra observations, we confirm the presence of a western X-ray cavity
or bubble, and report on a newly discovered eastern X-ray cavity. The total
mechanical power associated with these AGN-driven outflows is (22+/-9)*10^44
erg/s, and is sufficient to offset the cooling, indicating that AGN feedback
still provides a viable solution to the cooling flow problem even in the
strongest cool core clusters. Based on the distribution of the optical
filaments, as well as a jet-like structure seen in the 325 MHz VLA radio map,
we suggest that the cluster harbours older outflows along the north to south
direction. The jet of the central AGN is therefore either precessing or
sloshing-induced motions have caused the outflows to change directions. There
are also hints of an X-ray depression to the north aligned with the 325 MHz
jet-like structure, which might represent the highest redshift ghost cavity
discovered to date. We further find evidence of a cold front (r=65kpc) that
coincides with the outermost edge of the western X-ray cavity and the edge of
the radio mini-halo. The common location of the cold front with the edge of the
radio mini-halo supports the idea that the latter originates from electrons
being reaccelerated due to sloshing induced turbulence. Alternatively, its
coexistence with the edge of the X-ray cavity may be due to cool gas being
dragged out by the outburst. We confirm that the central AGN is highly
sub-Eddington and conclude that a >10^10M_Sun or a rapidly spinning black hole
is favoured to explain both the radiative-inefficiency of the AGN and the
powerful X-ray cavities.Comment: Accepted for publication to ApJ (minor corrections), 16 pages, 16
figures, 5 tables. Full resolution at http://www.stanford.edu/~juliehl/M1532
Student perception of workplace-based assessment.
Workplace-based assessment (WPBA) is key to medical education, providing a framework through which the trainee can be assessed and receive feedback in the clinical setting. WPBA was introduced in 2008-2009 to students in year 4 at University College London Medical School (UCLMS). Students raised concerns about the lack of standardisation in grading. As a result, white-space areas were introduced on WPBA forms. The aim of this was to permit assessors to expand their feedback, thereby enhancing its developmental potential. The aim of the project was to assess student perception of WPBA at UCLMS, and to determine whether re-designing the form had altered this perception
Cooling in the X-ray halo of the rotating, massive early-type galaxy NGC 7049
The relative importance of the physical processes shaping the thermodynamics
of the hot gas permeating rotating, massive early-type galaxies is expected to
be different from that in non-rotating systems. Here, we report the results of
the analysis of XMM-Newton data for the massive, lenticular galaxy NGC 7049.
The galaxy harbours a dusty disc of cool gas and is surrounded by an extended
hot X-ray emitting gaseous atmosphere with unusually high central entropy. The
hot gas in the plane of rotation of the cool dusty disc has a multi-temperature
structure, consistent with ongoing cooling. We conclude that the rotational
support of the hot gas is likely capable of altering the multiphase
condensation regardless of the ratio, which is here
relatively high, . However, the measured ratio of cooling time and
eddy turnover time around unity (-ratio ) implies significant
condensation, and at the same time, the constrained ratio of rotational
velocity and the velocity dispersion (turbulent Taylor number)
indicates that the condensing gas should follow non-radial orbits forming a
disc instead of filaments. This is in agreement with hydrodynamical simulations
of massive rotating galaxies predicting a similarly extended multiphase disc.Comment: 11 pages, 12 figures, accepted for publication in MNRA
- …
