455 research outputs found
Standard Transistor Array (STAR). Volume 1: Placement technique
A large scale integration (LSI) technology, the standard transistor array uses a prefabricated understructure of transistors and a comprehensive library of digital logic cells to allow efficient fabrication of semicustom digital LSI circuits. The cell placement technique for this technology involves formation of a one dimensional cell layout and "folding" of the one dimensional placement onto the chip. It was found that, by use of various folding methods, high quality chip layouts can be achieved. Methods developed to measure of the "goodness" of the generated placements include efficient means for estimating channel usage requirements and for via counting. The placement and rating techniques were incorporated into a placement program (CAPSTAR). By means of repetitive use of the folding methods and simple placement improvement strategies, this program provides near optimum placements in a reasonable amount of time. The program was tested on several typical LSI circuits to provide performance comparisons both with respect to input parameters and with respect to the performance of other placement techniques. The results of this testing indicate that near optimum placements can be achieved by use of the procedures incurring severe time penalties
Dark Energy: Recent Developments
A six parameter cosmological model, involving a vacuum energy density that is
extremely tiny compared to fundamental particle physics scales, describes a
large body of increasingly accurate astronomical data. In a first part of this
brief review we summarize the current situation, emphasizing recent progress.
An almost infinitesimal vacuum energy is only the simplest candidate for a
cosmologically significant nearly homogeneous exotic energy density with
negative pressure, generically called Dark Energy. If general relativity is
assumed to be also valid on cosmological scales, the existence of such a dark
energy component that dominates the recent universe is now almost inevitable.
We shall discuss in a second part the alternative possibility that general
relativity has to be modified on distances comparable to the Hubble scale. It
will turn out that observational data are restricting theoretical speculations
more and more. Moreover, some of the recent proposals have serious defects on a
fundamental level (ghosts, acausalities, superluminal fluctuations).Comment: 19 pages, 5 figures, invited ``brief review'' for Modern Physics
Letters A; to appea
The Quantum Mechanics of Hyperion
This paper is motivated by the suggestion [W. Zurek, Physica Scripta, T76,
186 (1998)] that the chaotic tumbling of the satellite Hyperion would become
non-classical within 20 years, but for the effects of environmental
decoherence. The dynamics of quantum and classical probability distributions
are compared for a satellite rotating perpendicular to its orbital plane,
driven by the gravitational gradient. The model is studied with and without
environmental decoherence. Without decoherence, the maximum quantum-classical
(QC) differences in its average angular momentum scale as hbar^{2/3} for
chaotic states, and as hbar^2 for non-chaotic states, leading to negligible QC
differences for a macroscopic object like Hyperion. The quantum probability
distributions do not approach their classical limit smoothly, having an
extremely fine oscillatory structure superimposed on the smooth classical
background. For a macroscopic object, this oscillatory structure is too fine to
be resolved by any realistic measurement. Either a small amount of smoothing
(due to the finite resolution of the apparatus) or a very small amount of
environmental decoherence is sufficient ensure the classical limit. Under
decoherence, the QC differences in the probability distributions scale as
(hbar^2/D)^{1/6}, where D is the momentum diffusion parameter. We conclude that
decoherence is not essential to explain the classical behavior of macroscopic
bodies.Comment: 17 pages, 24 figure
Celestial mechanics in Kerr spacetime
The dynamical parameters conventionally used to specify the orbit of a test
particle in Kerr spacetime are the energy , the axial component of the
angular momentum, , and Carter's constant . These parameters are
obtained by solving the Hamilton-Jacobi equation for the dynamical problem of
geodesic motion. Employing the action-angle variable formalism, on the other
hand, yields a different set of constants of motion, namely, the fundamental
frequencies , and associated with
the radial, polar and azimuthal components of orbital motion. These
frequencies, naturally, determine the time scales of orbital motion and,
furthermore, the instantaneous gravitational wave spectrum in the adiabatic
approximation. In this article, it is shown that the fundamental frequencies
are geometric invariants and explicit formulas in terms of quadratures are
derived. The numerical evaluation of these formulas in the case of a rapidly
rotating black hole illustrates the behaviour of the fundamental frequencies as
orbital parameters such as the semi-latus rectum , the eccentricity or
the inclination parameter are varied. The limiting cases of
circular, equatorial and Keplerian motion are investigated as well and it is
shown that known results are recovered from the general formulas.Comment: 25 pages (LaTeX), 5 figures, submitted to Class. Quantum Gra
A review of research into business coaching supervision
A systematic search of the coaching literature for original peer-reviewed studies into business coaching supervision yielded seven research reports. Evaluation of these studies showed them to be low in the reporting of methodological rigour. However, as an emerging area of research with great importance for the development of the profession of business coaching these studies provide valuable insights into the functions of supervision and its benefits. Gaps in knowledge and directions for future research are identified. There is a need for future research to be more rigorous in its reporting of methods and analytic procedures, small scale qualitative research that can provide insight into the issues and challenges of coaching supervision in specific contexts, and large scale quantitative research which can provide broader and generalizable understandings into the uses and benefits of supervision
Target mass number dependence of subthreshold antiproton production in proton-, deuteron- and alpha-particle-induced reactions
Data from KEK on subthreshold \bar{\mrm{p}} as well as on and
\mrm{K}^\pm production in proton-, deuteron- and -induced reactions
at energies between 2.0 and 12.0 A GeV for C, Cu and Pb targets are described
within a unified approach. We use a model which considers a nuclear reaction as
an incoherent sum over collisions of varying numbers of projectile and target
nucleons. It samples complete events and thus allows for the simultaneous
consideration of all final particles including the decay products of the
nuclear residues. The enormous enhancement of the \bar{\mrm{p}} cross
section, as well as the moderate increase of meson production in deuteron and
induced compared to proton-induced reactions, is well reproduced for
all target nuclei. In our approach, the observed enhancement near the
production threshold is mainly due to the contributions from the interactions
of few-nucleon clusters by simultaneously considering fragmentation processes
of the nuclear residues. The ability of the model to reproduce the target mass
dependence may be considered as a further proof of the validity of the cluster
concept.Comment: 9 pages, 4 figure
Modelling Clock Synchronization in the Chess gMAC WSN Protocol
We present a detailled timed automata model of the clock synchronization
algorithm that is currently being used in a wireless sensor network (WSN) that
has been developed by the Dutch company Chess. Using the Uppaal model checker,
we establish that in certain cases a static, fully synchronized network may
eventually become unsynchronized if the current algorithm is used, even in a
setting with infinitesimal clock drifts
Phenomenological analysis of K+ meson production in proton-nucleus collisions
Total and differential cross sections from literature, on the production of
K+ mesons in pA interactions at projectile energies between T=0.8 and 2.9 GeV,
covering the transition across the free nucleon-nucleon threshold at 1.58 GeV,
have been investigated. From the target-mass dependence of the production cross
sections no evidence for the expected change of the dominant reaction mechanism
from two-step to direct kaon production was found. At T=1.0 GeV the A
dependences of the total cross sections and of the most recent data from
COSY-Juelich, differential cross sections measured under forward angles, are
strongly different. The invariant K+ production cross sections show an overall
exponential scaling behavior with the squared four-momentum transfer between
the beam proton and the produced K+ meson for t< -0.05 GeV^2 independent of the
beam energy and emission angle. The data from COSY-Juelich reveal a strongly
different t dependence in the region of t>0 GeV^2. Further data at forward
angles and different beam energies should be taken in order to explore this
region of kinematically extreme conditions.Comment: 9 Pages, 11 Figure
Cosmic Evolution with Early and Late Acceleration Inspired by Dual Nature of the Ricci Scalar Curvature
In the present paper, it is found that dark energy emerges spontaneously from
the modified gravity. According to cosmological scenario, obtained here, the
universe inflates for sec. in the beginning and late universe
accelerates after 8.58 Gyrs. During the long intermediate period, it
decelerates driven by radiation and subsequently by matter. Emerged
gravitational dark energy mimics quintessence and its density falls by 115
orders from its initial value to its current
value .Comment: 40 pages. To appearin Int. J. Mod. Phys.
Genesis of Dark Energy: Dark Energy as Consequence of Release and Two-stage Tracking Cosmological Nuclear Energy
Recent observations on Type-Ia supernovae and low density () measurement of matter including dark matter suggest that the present-day
universe consists mainly of repulsive-gravity type `exotic matter' with
negative-pressure often said `dark energy' (). But the nature
of dark energy is mysterious and its puzzling questions, such as why, how,
where and when about the dark energy, are intriguing. In the present paper the
authors attempt to answer these questions while making an effort to reveal the
genesis of dark energy and suggest that `the cosmological nuclear binding
energy liberated during primordial nucleo-synthesis remains trapped for a long
time and then is released free which manifests itself as dark energy in the
universe'. It is also explained why for dark energy the parameter . Noting that for stiff matter and for radiation; is for dark energy because is due to `deficiency of
stiff-nuclear-matter' and that this binding energy is ultimately released as
`radiation' contributing , making . When
dark energy is released free at , . But as on present day
at when radiation strength has diminished to , . This, thus almost solves the dark-energy mystery of
negative pressure and repulsive-gravity. The proposed theory makes several
estimates /predictions which agree reasonably well with the astrophysical
constraints and observations. Though there are many candidate-theories, the
proposed model of this paper presents an entirely new approach (cosmological
nuclear energy) as a possible candidate for dark energy.Comment: 17 pages, 4 figures, minor correction
- …
