441 research outputs found
How many children and young people with life-limiting conditions are clinically unstable? A national data linkage study
Objective: To determine the clinical stage (stable, unstable, deteriorating or dying) for children and young people (CYP) aged 0-25 years in Scotland with lifelimiting conditions (LLCs). Design: National cohort of CYP with LLCs using linked routinely collected healthcare data. Setting: Scotland. Patients: 20 436 CYP identified as having LLCs and resident in Scotland between 1 April 2009 and 31 March 2014. Main outcome: Clinical stage based on emergency inpatient and intensive care unit admissions and date of death. Results: Over 2200 CYP with LLCs in Scotland were unstable, deteriorating or dying in each year. Compared with 1-year-olds to 5-year-olds, children under 1 year of age had the highest risk of instability (OR 6.4, 95% CI 5.7 to 7.1); all older age groups had lower risk. Girls were more likely to be unstable than boys (OR 1.15, 95% CI 1.06 to 1.24). CYP of South Asian (OR 1.61, 95% CI 1.28 to 2.01), Black (OR 1.58, 95% CI 1.04 to 2.41) and Other (OR 1.33, 95% CI 1.02 to 1.74) ethnicity were more likely to experience instability than White CYP. Deprivation was not a significant predictor of instability. Compared with congenital abnormalities, CYP with most other primary diagnoses had a higher risk of instability; only CYP with a primary perinatal diagnosis had significantly lower risk (OR 0.23, 95% CI 0.19 to 0.29). Conclusions: The large number of CYP with LLCs who are unstable, deteriorating or dying may benefit from input from specialist paediatric palliative care. The age group under 1 and CYP of South Asian, Black and Other ethnicities should be priority groups
The fatty acid composition of excreta of broiler chickens fed different dietary fatty acids
Published: October 15, 2017Background and Objective: Excreted fatty acids represent the net result of fat digestion, absorbtion and bioconversion by chickens or
their intestinal microbiome and thus provide information on the capacity of the birds to utilize different fat types. This study aimed to
clarify the relationship between the fatty acid profile of diet and excreta in broiler chickens. Materials and Methods: Male
Cobb 500 broilers (n = 240) were fed (ad libitum) one of 6 different diets supplemented with 4% (w/w) beef tallow, flaxseed, corn,
macadamia, canola or coconut oils (4 replicate pens/treatment) from hatching day. At day-40 post-hatch, excreta samples were collected
for fatty acids analysis. Results: Significant positive linear correlations (R = 0.82-0.99) were found in the fatty acid content of diets and
excreta for all fatty acid groups in all treatments. Comparing the individual fatty acid content of diet and excreta suggested that the
broilers preferentially utilized (in decending order, if present) omega-3 polyunsaturated fatty acids, omega-9 and omega-7
monounsaturated fatty acids and most saturated fatty acids (except C16:0 and C18:0), but the omega-6 polyunsaturated fatty acids were
under utilized even when they were the most abundant. Conclusion: Fat sources which are high in the C16:0, C18:0 and omega-6 fatty
acids may not be ideal for broiler feed formulations for nutritional and economical reasons.Khaled Kanakri, John Carragher, Robert Hughes, Beverly Muhlhausler, Carolyn de Koning and Robert Gibso
A novel method to allow noninvasive, longitudinal imaging of the murine immune system in vivo
In vivo imaging has revolutionized understanding of the spatiotemporal complexity that subserves the generation of successful effector and regulatory immune responses. Until now, invasive surgery has been required for microscopic access to lymph nodes (LNs), making repeated imaging of the same animal impractical and potentially affecting lymphocyte behavior. To allow longitudinal in vivo imaging, we conceived the novel approach of transplanting LNs into
the mouse ear pinna. Transplanted LNs maintain the structural and cellular organization of conventional secondary lymphoid organs. They participate in lymphocyte
recirculation and exhibit the capacity to receive and respond to local antigenic challenge. The same LN could be repeatedly imaged through time without the requirement for surgical exposure, and the dynamic behavior of the cells within the transplanted LN could be characterized. Crucially, the use of blood vessels as fiducial markers also allowed precise re-registration of the same regions for
longitudinal imaging. Thus, we provide the first demonstration of a method for repeated, noninvasive, in vivo imaging of lymphocyte behavior
Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza virus that expresses an altered nucleoprotein sequence
Influenza virus poses a difficult challenge for protective immunity. This virus is adept at altering its surface proteins, the proteins that are the targets of neutralizing antibody. Consequently, each year a new vaccine must be developed to combat the current recirculating strains. A universal influenza vaccine that primes specific memory cells that recognise conserved parts of the virus could prove to be effective against both annual influenza variants and newly emergent potentially pandemic strains. Such a vaccine will have to contain a safe and effective adjuvant that can be used in individuals of all ages. We examine protection from viral challenge in mice vaccinated with the nucleoprotein from the PR8 strain of influenza A, a protein that is highly conserved across viral subtypes. Vaccination with nucleoprotein delivered with a universally used and safe adjuvant, composed of insoluble aluminium salts, provides protection against viruses that either express the same or an altered version of nucleoprotein. This protection correlated with the presence of nucleoprotein specific CD8 T cells in the lungs of infected animals at early time points after infection. In contrast, immunization with NP delivered with alum and the detoxified LPS adjuvant, monophosphoryl lipid A, provided some protection to the homologous viral strain but no protection against infection by influenza expressing a variant nucleoprotein. Together, these data point towards a vaccine solution for all influenza A subtypes
A resolution record for cryoEM
Cryo electron microscopy (cryoEM) is a fast-growing technique for structure determination. Two recent papers report the first atomic resolution structure of a protein obtained by averaging images of frozen-hydrated biomolecules. They both describe maps of symmetric apoferritin assemblies, a common test specimen, in unprecedented detail. New instrument improvements, different in the two studies, have contributed better images, and image analysis can extract structural information sufficient to resolve individual atomic positions. While true atomic resolution maps will not be routine for most proteins, the studies suggest structures determined by cryoEM will continue to improve, increasing their impact on biology and medicine
Policy and prevention approaches for disordered and hazardous gaming and internet use: an international perspective
Problems related to high levels of gaming and Internet usage are increasingly recognized as a potential public health burden across the developed world. The aim of this review was to present an international perspective on prevention strategies for Internet gaming disorder and related health conditions (e.g., Internet addiction), as well as hazardous gaming and Internet use. A systematic review of quantitative research evidence was conducted, followed by a search of governmental reports, policy and position statements, and health guidelines in the last decade. The regional scope included the United States, United Kingdom, Australia, China, Germany, Japan, and South Korea. Prevention studies have mainly involved school-based programs to train healthier Internet use habits in adolescents. The efficacy of selective prevention is promising but warrants further empirical attention. On an international scale, the formal recognition of gaming or Internet use as a disorder or as having quantifiable harms at certain levels of usage has been foundational to developing structured prevention responses. The South Korean model, in particular, is an exemplar of a coordinated response to a public health threat, with extensive government initiatives and long-term strategic plans at all three levels of prevention (i.e., universal, selective, and indicated). Western regions, by comparison, are dominated by prevention approaches led by non-profit organizations and private enterprise. The future of prevention of gaming and Internet problems ultimately relies upon all stakeholders working collaboratively in the public interest, confronting the reality of the evidence base and developing practical, ethical, and sustainable countermeasures
Recommended from our members
Simulated AFRS as decision-aids in face matching
Automated Facial Recognition Systems (AFRS) are used by governments, law enforcement agencies and private businesses to verify the identity of individuals. While previous research has compared the performance of AFRS and humans on tasks of one-to-one face matching, little is known about how effectively human operators can use these AFRS as decision-aids. Our aim was to investigate how the prior decision from an AFRS affects human performance on a face matching task, and to establish whether human oversight of AFRS decisions can lead to collaborative performance gains for the human algorithm team. The identification decisions from our simulated AFRS were informed by the performance of a real, state-of-the-art, Deep Convolutional Neural Network (DCNN) AFRS on the same task. Across five pre-registered experiments, human operators used the decisions from highly accurate AFRS (>90%) to improve their own face matching performance compared to baseline (sensitivity gain: Cohen’s d = 0.71-1.28; overall accuracy gain: d = 0.73-1.46). Yet, despite this improvement, AFRS-aided human performance consistently failed to reach the level that the AFRS achieved alone. Even when the AFRS erred only on the face pairs with the highest human accuracy (>89%), participants often failed to correct the system’s errors, while also overruling many correct decisions, raising questions about the conditions under which human oversight might enhance AFRS operation. Overall, these data demonstrate that the human operator is a limiting factor in this simple model of human-AFRS teaming. These findings have implications for the “human-in-the-loop” approach to AFRS oversight in forensic face matching scenariosOutput Status: Forthcomin
Recommended from our members
Surgical face masks impair human face matching performance for familiar and unfamiliar faces
In response to the COVID-19 pandemic, many governments around the world now recommend, or require, that their citizens cover the lower half of their face in public. Consequently, many people now wear surgical face masks in public. We investigated whether surgical face masks affected the performance of human observers, and a state-of-the-art face recognition system, on tasks of perceptual face matching. Participants judged whether two simultaneously presented face photographs showed the same person or two different people. We superimposed images of surgical masks over the faces, creating three different mask conditions: control (no masks), mixed (one face wearing a mask), and masked (both faces wearing masks). We found that surgical face masks have a large detrimental effect on human face matching performance, and that the degree of impairment is the same regardless of whether one or both faces in each pair are masked. Surprisingly, this impairment is similar in size for both familiar and unfamiliar faces. When matching masked faces, human observers are biased to reject unfamiliar faces as “mismatches” and to accept familiar faces as “matches”. Finally, the face recognition system showed very high classification accuracy for control and masked stimuli, even though it had not been trained to recognise masked faces. However, accuracy fell markedly when one face was masked and the other was not. Our findings demonstrate that surgical face masks impair the ability of humans, and naïve face recognition systems, to perform perceptual face matching tasks. Identification decisions for masked faces should be treated with caution
Domestic Water Demand During Droughts in Temperate Climates: Synthesising Evidence for an Integrated Framework
In the upcoming years, as the population is growing and ageing, as lifestyle changes create the need for more water and as fewer people live in each household, the UK water sector will have to deal with challenges in the provision of adequate water services. Unless critical action is taken, every area in the UK may face a supply-demand gap by the 2080s. Extreme weather events and variations that alter drought and flood frequency add to these pressures. However, little evidence is available about householders’ response to drought and there are few if any studies incorporating this evidence into models of demand forecasting. The present work lays the groundwork for modelling domestic water demand response under drought conditions in temperate climates. After discussing the current literature on estimating and forecasting domestic water consumption under both ‘normal’ and drought conditions, this paper identifies the limited ability of current domestic demand forecasting techniques to include the many different and evolving factors affecting domestic consumption and it stresses the need for the inclusion of inter and intra household factors as well as water use practices in future demand forecasting models
Simulated Automated Facial Recognition Systems as Decision-Aids in Forensic Face Matching Tasks
Automated Facial Recognition Systems (AFRS) are used by governments, law enforcement agencies and private businesses to verify the identity of individuals. While previous research has compared the performance of AFRS and humans on tasks of one-to-one face matching, little is known about how effectively human operators can use these AFRS as decision-aids. Our aim was to investigate how the prior decision from an AFRS affects human performance on a face matching task, and to establish whether human oversight of AFRS decisions can lead to collaborative performance gains for the human algorithm team. The identification decisions from our simulated AFRS were informed by the performance of a real, state-of-the-art, Deep Convolutional Neural Network (DCNN) AFRS on the same task. Across five pre-registered experiments, human operators used the decisions from highly accurate AFRS (>90%) to improve their own face matching performance compared to baseline (sensitivity gain: Cohen’s d = 0.71-1.28; overall accuracy gain: d = 0.73-1.46). Yet, despite this improvement, AFRS-aided human performance consistently failed to reach the level that the AFRS achieved alone. Even when the AFRS erred only on the face pairs with the highest human accuracy (>89%), participants often failed to correct the system’s errors, while also overruling many correct decisions, raising questions about the conditions under which human oversight might enhance AFRS operation. Overall, these data demonstrate that the human operator is a limiting factor in this simple model of human-AFRS teaming. These findings have implications for the “human-in-the-loop” approach to AFRS oversight in forensic face matching scenario
- …
