1,702 research outputs found
Shock wave focusing using geometrical shock dynamics
A finite-difference numerical method for geometrical shock dynamics has been developed based on the analogy between the nonlinear ray equations and the supersonic potential equation. The method has proven to be an efficient and inexpensive tool for approximately analyzing the focusing of weak shock waves, where complex nonlinear wave interactions occur over a large range of physical scales. The numerical results exhibit the qualitative behavior of strong, moderate, and weak shock focusing observed experimentally. The physical mechanisms that are influenced by aperture angle and shock strength are properly represented by geometrical shock dynamics. Comparison with experimental measurements of the location at which maximum shock pressure occurs shows good agreement, but the maximum pressure at focus is overestimated by about 60%. This error, though large, is acceptable when the speed and low cost of the method is taken into consideration. The error is primarily due to the under prediction of disturbance speed on weak shock fronts. Adequate resolution of the focal region proves to be particularly important to properly judge the validity of shock dynamics theory, under-resolution leading to overly optimistic conclusions
Volume fraction variations and dilation in colloids and granulars
Discusses the importance of spatial and temporal variations in particle volume fraction to understanding the force response of concentrated colloidal suspensions and granular materials
Dilatancy, Jamming, and the Physics of Granulation
Granulation is a process whereby a dense colloidal suspension is converted
into pasty granules (surrounded by air) by application of shear. Central to the
stability of the granules is the capillary force arising from the interfacial
tension between solvent and air. This force appears capable of maintaining a
solvent granule in a jammed solid state, under conditions where the same amount
of solvent and colloid could also exist as a flowable droplet. We argue that in
the early stages of granulation the physics of dilatancy, which requires that a
powder expand on shearing, is converted by capillary forces into the physics of
arrest. Using a schematic model of colloidal arrest under stress, we speculate
upon various jamming and granulation scenarios. Some preliminary experimental
results on aspects of granulation in hard-sphere colloidal suspensions are also
reported.Comment: Original article intended for J Phys Cond Mat special issue on
Granular Materials (M Nicodemi, Ed.
Flavor decomposition of the elastic nucleon electromagnetic form factors
The u- and d-quark contributions to the elastic nucleon electromagnetic form
factors have been determined using experimental data on GEn, GMn, GpE, and GpM.
Such a flavor separation of the form factors became possible up to 3.4 GeV2
with recent data on GEn from Hall A at JLab. At a negative four-momentum
transfer squared Q2 above 1 GeV2, for both the u- and d-quark components, the
ratio of the Pauli form factor to the Dirac form factor, F2/F1, was found to be
almost constant, and for each of F2 and F1 individually, the d-quark portions
of both form factors drop continuously with increasing Q2.Comment: 4 pages, 3 figure
Pattern formation in chemically interacting active rotors with self-propulsion
We demonstrate that active rotations in chemically signalling particles, such as autochemotactic close to walls, create a route for pattern formation based on a nonlinear yet deterministic instability mechanism. For slow rotations, we find a transient persistence of the uniform state, followed by a sudden formation of clusters contingent on locking of the average propulsion direction by chemotaxis. These clusters coarsen, which results in phase separation into a dense and a dilute region. Faster rotations arrest phase separation leading to a global travelling wave of rotors with synchronized roto-translational motion. Our results elucidate the physics resulting from the competition of two generic paradigms in active matter, chemotaxis and active rotations, and show that the latter provides a tool to design programmable self-assembly of active matter, for example to control coarsening.Marie Skłodowska Curie (Intra European Fellowship within Horizon 2020 (Grant ID: 654908)), Royal Society, Engineering and Physical Sciences Research Counci
Do current-density nonlinearities cut off the glass transition?
Extended mode coupling theories for dense fluids predict that nonlinear
current-density couplings cut off the singular `ideal glass transition',
present in the standard mode coupling theory where such couplings are ignored.
We suggest here that, rather than allowing for activated processes as sometimes
supposed, contributions from current-density couplings are always negligible
close to a glass transition. We discuss in schematic terms how activated
processes can nonetheless cut off the transition, by causing the memory
function to become linear in correlators at late times.Comment: 4 page
Aging of rotational diffusion in colloidal gels and glasses
We study the rotational diffusion of aging Laponite suspensions for a wide
range of concentrations using depolarized dynamic light scattering. The
measured orientational correlation functions undergo an ergodic to non-ergodic
transition that is characterized by a concentration-dependent
ergodicity-breaking time. We find that the relaxation times associated with
rotational degree of freedom as a function of waiting time, when scaled with
their ergodicity-breaking time, collapse on two distinct master curves. These
master curves are similar to those previously found for the translational
dynamics; The two different classes of behavior were attributed to colloidal
gels and glasses. Therefore, the aging dynamics of rotational degree of freedom
provides another signature of the distinct dynamical behavior of colloidal gels
and glasses.Comment: 12 pages, 7 figure
Phase Separation in Binary Fluid Mixtures with Continuously Ramped Temperature
We consider the demixing of a binary fluid mixture, under gravity, which is
steadily driven into a two phase region by slowly ramping the temperature. We
assume, as a first approximation, that the system remains spatially isothermal,
and examine the interplay of two competing nonlinearities. One of these arises
because the supersaturation is greatest far from the meniscus, creating
inversion of the density which can lead to fluid motion; although isothermal,
this is somewhat like the Benard problem (a single-phase fluid heated from
below). The other is the intrinsic diffusive instability which results either
in nucleation or in spinodal decomposition at large supersaturations.
Experimental results on a simple binary mixture show interesting oscillations
in heat capacity and optical properties for a wide range of ramp parameters. We
argue that these oscillations arise under conditions where both nonlinearities
are important
Two-Dimensional Copolymers and Exact Conformal Multifractality
We consider in two dimensions the most general star-shaped copolymer, mixing
random (RW) or self-avoiding walks (SAW) with specific interactions thereof.
Its exact bulk or boundary conformal scaling dimensions in the plane are all
derived from an algebraic structure existing on a random lattice (2D quantum
gravity). The multifractal dimensions of the harmonic measure of a 2D RW or SAW
are conformal dimensions of certain star copolymers, here calculated exactly as
non rational algebraic numbers. The associated multifractal function f(alpha)
are found to be identical for a random walk or a SAW in 2D. These are the first
examples of exact conformal multifractality in two dimensions.Comment: 4 pages, 2 figures, revtex, to appear in Phys. Rev. Lett., January
199
Transients in sheared granular matter
As dense granular materials are sheared, a shear band and an anisotropic
force network form. The approach to steady state behavior depends on the
history of the packing and the existing force and contact network. We present
experiments on shearing of dense granular matter in a 2D Couette geometry in
which we probe the history and evolution of shear bands by measuring particle
trajectories and stresses during transients. We find that when shearing is
stopped and restarted in the same direction, steady state behavior is
immediately reached, in agreement with the typical assumption that the system
is quasistatic. Although some relaxation of the force network is observed when
shearing is stopped, quasistatic behavior is maintained because the contact
network remains essentially unchanged. When the direction of shear is reversed,
a transient occurs in which stresses initially decrease, changes in the force
network reach further into the bulk, and particles far from the wheel become
more mobile. This occurs because the force network is fragile to changes
transverse to the force network established under previous shear; particles
must rearrange before becoming jammed again, thereby providing resistance to
shear in the reversed direction. The strong force network is reestablished
after displacing the shearing surface , where is the mean grain
diameter. Steady state velocity profiles are reached after a shear of . Particles immediately outside of the shear band move on average less than
1 diameter before becoming jammed again. We also examine particle rotation
during this transient and find that mean particle spin decreases during the
transient, which is related to the fact that grains are not interlocked as
strongly.Comment: 7 pages, 11 figures, accepted to Eur. Phys. J. E, revised version
based on referee suggestion
- …
