1,642 research outputs found
A Hebbian/Anti-Hebbian Network for Online Sparse Dictionary Learning Derived from Symmetric Matrix Factorization
Olshausen and Field (OF) proposed that neural computations in the primary
visual cortex (V1) can be partially modeled by sparse dictionary learning. By
minimizing the regularized representation error they derived an online
algorithm, which learns Gabor-filter receptive fields from a natural image
ensemble in agreement with physiological experiments. Whereas the OF algorithm
can be mapped onto the dynamics and synaptic plasticity in a single-layer
neural network, the derived learning rule is nonlocal - the synaptic weight
update depends on the activity of neurons other than just pre- and postsynaptic
ones - and hence biologically implausible. Here, to overcome this problem, we
derive sparse dictionary learning from a novel cost-function - a regularized
error of the symmetric factorization of the input's similarity matrix. Our
algorithm maps onto a neural network of the same architecture as OF but using
only biologically plausible local learning rules. When trained on natural
images our network learns Gabor-filter receptive fields and reproduces the
correlation among synaptic weights hard-wired in the OF network. Therefore,
online symmetric matrix factorization may serve as an algorithmic theory of
neural computation.Comment: 2014 Asilomar Conference on Signals, Systems and Computers. v2: fixed
a typo in equation 2
Blind nonnegative source separation using biological neural networks
Blind source separation, i.e. extraction of independent sources from a
mixture, is an important problem for both artificial and natural signal
processing. Here, we address a special case of this problem when sources (but
not the mixing matrix) are known to be nonnegative, for example, due to the
physical nature of the sources. We search for the solution to this problem that
can be implemented using biologically plausible neural networks. Specifically,
we consider the online setting where the dataset is streamed to a neural
network. The novelty of our approach is that we formulate blind nonnegative
source separation as a similarity matching problem and derive neural networks
from the similarity matching objective. Importantly, synaptic weights in our
networks are updated according to biologically plausible local learning rules.Comment: Accepted for publication in Neural Computatio
Do retinal ganglion cells project natural scenes to their principal subspace and whiten them?
Several theories of early sensory processing suggest that it whitens sensory
stimuli. Here, we test three key predictions of the whitening theory using
recordings from 152 ganglion cells in salamander retina responding to natural
movies. We confirm the previous finding that firing rates of ganglion cells are
less correlated compared to natural scenes, although significant correlations
remain. We show that while the power spectrum of ganglion cells decays less
steeply than that of natural scenes, it is not completely flattened. Finally,
we find evidence that only the top principal components of the visual stimulus
are transmitted.Comment: 2016 Asilomar Conference on Signals, Systems and Computer
A Neuron as a Signal Processing Device
A neuron is a basic physiological and computational unit of the brain. While
much is known about the physiological properties of a neuron, its computational
role is poorly understood. Here we propose to view a neuron as a signal
processing device that represents the incoming streaming data matrix as a
sparse vector of synaptic weights scaled by an outgoing sparse activity vector.
Formally, a neuron minimizes a cost function comprising a cumulative squared
representation error and regularization terms. We derive an online algorithm
that minimizes such cost function by alternating between the minimization with
respect to activity and with respect to synaptic weights. The steps of this
algorithm reproduce well-known physiological properties of a neuron, such as
weighted summation and leaky integration of synaptic inputs, as well as an
Oja-like, but parameter-free, synaptic learning rule. Our theoretical framework
makes several predictions, some of which can be verified by the existing data,
others require further experiments. Such framework should allow modeling the
function of neuronal circuits without necessarily measuring all the microscopic
biophysical parameters, as well as facilitate the design of neuromorphic
electronics.Comment: 2013 Asilomar Conference on Signals, Systems and Computers, see
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=681029
I Probe, Therefore I Am: Designing a Virtual Journalist with Human Emotions
By utilizing different communication channels, such as verbal language,
gestures or facial expressions, virtually embodied interactive humans hold a
unique potential to bridge the gap between human-computer interaction and
actual interhuman communication. The use of virtual humans is consequently
becoming increasingly popular in a wide range of areas where such a natural
communication might be beneficial, including entertainment, education, mental
health research and beyond. Behind this development lies a series of
technological advances in a multitude of disciplines, most notably natural
language processing, computer vision, and speech synthesis. In this paper we
discuss a Virtual Human Journalist, a project employing a number of novel
solutions from these disciplines with the goal to demonstrate their viability
by producing a humanoid conversational agent capable of naturally eliciting and
reacting to information from a human user. A set of qualitative and
quantitative evaluation sessions demonstrated the technical feasibility of the
system whilst uncovering a number of deficits in its capacity to engage users
in a way that would be perceived as natural and emotionally engaging. We argue
that naturalness should not always be seen as a desirable goal and suggest that
deliberately suppressing the naturalness of virtual human interactions, such as
by altering its personality cues, might in some cases yield more desirable
results.Comment: eNTERFACE16 proceeding
Effects of image and advertising efficiency on customer loyalty and antecedents of loyalty: turkish banks sample
The present study examines the relationships between image, advertising efficiency, customer satisfaction, customer expectation, perceived quality, perceived value, customer complaint and customer loyalty. These variables are increasingly recognised as being sources of competitive advantage.
However, little empirical research has been conducted to examine these variables simultaneously and their relationships with post-purchase behaviour especially service organizations like banks. The present study was therefore designed to develop an understanding of the relationships between these variables and their influence on loyalty. An integrative model was developed and tested by using data collected from the customers of Turkish banks. The results reveal that bank image and advertising efficiency influence customer loyalty and antecedents of loyalty significantly
- …
