371 research outputs found
DROM: Enabling Efficient and Effortless Malleability for Resource Managers
In the design of future HPC systems, research in resource management is showing an increasing interest in a more dynamic control of the available resources. It has been proven that enabling the jobs to change the number of computing resources at run time, i.e. their malleability, can significantly improve HPC system performance. However, job schedulers and applications typically do not support malleability due to the common belief that it introduces additional programming complexity and performance impact. This paper presents DROM, an interface that provides efficient malleability with no effort for program developers. The running application is enabled to adapt the number of threads to the number of assigned computing resources in a completely transparent way to the user through the integration of DROM with standard programming models, such as OpenMP/OmpSs, and MPI. We designed the APIs to be easily used by any programming model, application and job scheduler or resource manager. Our experimental results from two realistic use cases analysis, based on malleability by reducing the number of cores a job is using per node and jobs co-allocation, show the potential of DROM for improving the performance of HPC systems. In particular, the workload of two MPI+OpenMP neuro-simulators are tested, reporting improvement in system metrics, such as total run time and average response time, up to 8% and 48%, respectively.This work is partially supported by the Span-
ish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project, by the Generalitat de Catalunya (contract 2017-SGR-1414) and from the European Union’s Horizon 2020 under grant agreement No 785907 (HBP SGA2)Peer ReviewedPostprint (author's final draft
Center or Limit Cycle: Renormalization Group as a Probe
Based on our studies done on two-dimensional autonomous systems, forced
non-autonomous systems and time-delayed systems, we propose a unified
methodology - that uses renormalization group theory - for finding out
existence of periodic solutions in a plethora of nonlinear dynamical systems
appearing across disciplines. The technique will be shown to have a non-trivial
ability of classifying the solutions into limit cycles and periodic orbits
surrounding a center. Moreover, the methodology has a definite advantage over
linear stability analysis in analyzing centers
Random, blocky and alternating ordering in supramolecular polymers of chemically bidisperse monomers
As a first step to understanding the role of molecular or chemical
polydispersity in self-assembly, we put forward a coarse-grained model that
describes the spontaneous formation of quasi-linear polymers in solutions
containing two self-assembling species. Our theoretical framework is based on a
two-component self-assembled Ising model in which the bidispersity is
parameterized in terms of the strengths of the binding free energies that
depend on the monomer species involved in the pairing interaction. Depending
upon the relative values of the binding free energies involved, different
morphologies of assemblies that include both components are formed, exhibiting
paramagnetic-, ferromagnetic- or anti ferromagnetic-like order,i.e., random,
blocky or alternating ordering of the two components in the assemblies.
Analyzing the model for the case of ferromagnetic ordering, which is of most
practical interest, we find that the transition from conditions of minimal
assembly to those characterized by strong polymerization can be described by a
critical concentration that depends on the concentration ratio of the two
species. Interestingly, the distribution of monomers in the assemblies is
different from that in the original distribution, i.e., the ratio of the
concentrations of the two components put into the system. The monomers with a
smaller binding free energy are more abundant in short assemblies and monomers
with a larger binding affinity are more abundant in longer assemblies. Under
certain conditions the two components congregate into separate supramolecular
polymeric species and in that sense phase separate. We find strong deviations
from the expected growth law for supramolecular polymers even for modest
amounts of a second component, provided it is chemically sufficiently distinct
from the main one.Comment: Submitted to Macromolecules, 6 figures. arXiv admin note: substantial
text overlap with arXiv:1111.176
The emergence of waves in random discrete systems
Essential criteria for the emergence of wave-like manifestations occurring in an entirely discrete system are identified using a simple model for the movement of particles through a network. The dynamics are entirely stochastic and memoryless involving a birth-death-migration process. The requirements are that the network should have at least three nodes, that migration should have a directional bias, and that the particle dynamics have a non-local dependence. Well defined bifurcations mark transitions between amorphous, wave-like and collapsed states with an intermittent regime between the latter two
Правове регулювання безоплатної приватизації земель запасу
Досліджуються правові підстави безоплатної приватизації земель запасу. Автор виокремлює два її різновиди – гарантовану і негарантовану. Розкриваються особливості багатоетапної процедури реалізації права на безоплатну приватизацію земель запасу в Україні.Исследуются правовые основания бесплатной приватизации земель запаса. Автор разделяет два ее разновидности – гарантированную и негарантированную. Раскрываются особенности многоэтапной процедуры реализации права на бесплатную приватизацию земель в Украине.Legal rules about free of payment land privatization are investigated. The author proposes dividing free of payment land privatization into two varieties: guaranteed and nonguaranteed ones. Legal peculiarities of multistoried procedure of free of payment land privatization in Ukraine are disclosed
Molecular and Biological Analysis on Ommastrephes caroli Findings in the Central Western Mediterranean Sea (Sardinian Waters) Including First Age Investigation Using Eye Lenses and Beaks
Molecular identifications based on two mitochondrial markers (cytochrome c oxidase subunit I -COI- and 16S ribosomal RNA gene -16S-) have been implemented to confirm the morphological identification of eight specimens collected in the Central western Mediterranean. Molecular data show they belonged to a recently resurrected species of the genus Ommastrephes, i.e., O. caroli, known to be distributed in the Atlantic Ocean and Mediterranean Sea. Despite this, molecular analyses of COI sequences evidenced the presence of potential genetic differentiation between Mediterranean and Atlantic samples, highlighting the need for further studies, with more individuals to investigate the connectivity between individuals living in the two areas. Furthermore, morphological, biometric and reproductive features here reported, could be useful in evaluating possible distinctive biological features between the Mediterranean and Atlantic individuals. Female mature size was larger than the male. The relationships obtained between the beak measurements and body sizes (DML; TW) were better described by a power model. Asynchronous oocytes development with relatively small oocytes (0.05–1.10 mm) and a protracted intermittent spawning with active feeding were observed. This study also reported for the specie O. caroli the first data on the potential fecundity estimated (840061 oocytes), the oviducal load (90000 ripe oocytes) as well as the number of seminal receptacles and the size and morphology of the spermatangia found in the buccal mass of all mated females. Even if on a low sample size, beaks and eye lenses were used for the first time in O. caroli for age estimation. The statistically significant relationship found between increments counted in eye lenses and beaks highlighted the reliability of the lenses to estimate age in O. caroli, even if further studies will be needed for its validation. Assuming a daily increment for both structures, a mean life span of about 12–13 months was estimated for both sexes, which is consistent with the sexual maturity condition observed in all the samples and the semelparity known for cephalopods coleoids
Holistic Slowdown Driven Scheduling and Resource Management for Malleable Jobs
In job scheduling, the concept of malleability has been explored since many
years ago. Research shows that malleability improves system performance, but
its utilization in HPC never became widespread. The causes are the difficulty
in developing malleable applications, and the lack of support and integration
of the different layers of the HPC software stack. However, in the last years,
malleability in job scheduling is becoming more critical because of the
increasing complexity of hardware and workloads. In this context, using nodes
in an exclusive mode is not always the most efficient solution as in
traditional HPC jobs, where applications were highly tuned for static
allocations, but offering zero flexibility to dynamic executions. This paper
proposes a new holistic, dynamic job scheduling policy, Slowdown Driven
(SD-Policy), which exploits the malleability of applications as the key
technology to reduce the average slowdown and response time of jobs. SD-Policy
is based on backfill and node sharing. It applies malleability to running jobs
to make room for jobs that will run with a reduced set of resources, only when
the estimated slowdown improves over the static approach. We implemented
SD-Policy in SLURM and evaluated it in a real production environment, and with
a simulator using workloads of up to 198K jobs. Results show better resource
utilization with the reduction of makespan, response time, slowdown, and energy
consumption, up to respectively 7%, 50%, 70%, and 6%, for the evaluated
workloads
- …
