230 research outputs found
High resolution infrared absorption spectra, crystal field, and relaxation processes in CsCdBr_3:Pr^3+
High resolution low-temperature absorption spectra of 0.2% Pr^3+ doped
CsCdBr_3 were measured in the spectral region 2000--7000 cm-1. Positions and
widths of the crystal field levels within the 3H5, 3H4, 3F2, and 3F3 multiplets
of the Pr^3+ main center have been determined. Hyperfine structure of several
spectral lines has been found. Crystal field calculations were carried out in
the framework of the semiphenomenological exchange charge model (ECM).
Parameters of the ECM were determined by fitting to the measured total
splittings of the 3H4 and 3H6 multiplets and to the observed in this work
hyperfine splittings of the crystal field levels. One- and two-phonon
relaxation rates were calculated using the phonon Green's functions of the
perfect (CsCdBr_3) and locally perturbed (impurity dimer centers in
CsCdBr_3:Pr^3+) crystal lattice. Comparison with the measured linewidths
confirmed an essential redistribution of the phonon density of states in
CsCdBr_3 crystals doped with rare-earth ions.Comment: 16 pages, 5 tables, 3 figure
Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments
Crystal scintillators provide potential merits for the pursuit of low-energy
low-background experiments. A CsI(Tl) scintillating crystal detector is being
constructed to study low-energy neutrino physics at a nuclear reactor, while
projects are underway to adopt this technique for dark matter searches. The
choice of the geometrical parameters of the crystal modules, as well as the
optimization of the read-out scheme, are the results of an R&D program.
Crystals with 40 cm in length were developed. The detector requirements and the
achieved performance of the prototypes are presented. Future prospects for this
technique are discussed.Comment: 32 pages, 14 figure
A major electronics upgrade for the H.E.S.S. Cherenkov telescopes 1-4
The High Energy Stereoscopic System (H.E.S.S.) is an array of imaging
atmospheric Cherenkov telescopes (IACTs) located in the Khomas Highland in
Namibia. It consists of four 12-m telescopes (CT1-4), which started operations
in 2003, and a 28-m diameter one (CT5), which was brought online in 2012. It is
the only IACT system featuring telescopes of different sizes, which provides
sensitivity for gamma rays across a very wide energy range, from ~30 GeV up to
~100 TeV. Since the camera electronics of CT1-4 are much older than the one of
CT5, an upgrade is being carried out; first deployment was in 2015, full
operation is planned for 2016. The goals of this upgrade are threefold:
reducing the dead time of the cameras, improving the overall performance of the
array and reducing the system failure rate related to aging. Upon completion,
the upgrade will assure the continuous operation of H.E.S.S. at its full
sensitivity until and possibly beyond the advent of CTA. In the design of the
new components, several CTA concepts and technologies were used and are thus
being evaluated in the field: The upgraded read-out electronics is based on the
NECTAR readout chips; the new camera front- and back-end control subsystems are
based on an FPGA and an embedded ARM computer; the communication between
subsystems is based on standard Ethernet technologies. These hardware solutions
offer good performance, robustness and flexibility. The design of the new
cameras is reported here.Comment: Proceedings of the 34th International Cosmic Ray Conference, 30 July-
6 August, 2015, The Hague, The Netherland
Activation patterns during action observation are modulated by context in mirror system areas
The role of the mirror system in action understanding has been widely debated. Some authors have suggested that the mirror system plays an important role in action understanding (Rizzolatti and Sinigaglia, 2010), whereas others have claimed that direct evidence to support this view is lacking (Hickok, 2009). If mirror neurons have an active role in action understanding rather than passive visuomotor transformation during action observation, they should respond differently to the observation of actions depending on the intentions of the observer. In this fMRI study, twenty participants observed identical actions under different instruction contexts. The task was either to understand the actions, identify the physical features of the actions, or passively observe the actions. A multi-voxel pattern analysis revealed unique patterns of activation in ventral premotor cortex and inferior parietal lobule across the different contexts. The results suggest that ventral premotor and inferior parietal areas respond differently to observed actions depending on the mindset of the observer. This is consistent with the view that these regions do not merely process observed actions passively, but play an active role in action understanding
Lilia, A Showcase for Fast Bootstrap of Conversation-Like Dialogues Based on a Goal-Oriented System
International audienceRecently many works have proposed to cast human-machine interaction in a sentence generation scheme. Neural networks models can learn how to generate a probable sentence based on the user's statement along with a partial view of the dialogue history. While appealing to some extent, these approaches require huge training sets of general-purpose data and lack a principled way to intertwine language generation with information retrieval from back-end resources to fuel the dialogue with actualised and precise knowledge. As a practical alternative, in this paper, we present Lilia, a showcase for fast bootstrap of conversation-like dialogues based on a goal-oriented system. First, a comparison of goal-oriented and conversational system features is led, then a conversion process is described for the fast bootstrap of a new system, finalised with an on-line training of the system's main components. Lilia is dedicated to a chitchat task, where speakers exchange viewpoints on a displayed image while trying collaboratively to derive its author's intention. Evaluations with user trials showed its efficiency in a realistic setup
Locked nailing for the treatment of displaced articular fractures of the calcaneus: description of a new procedure with calcanail®
Although open reduction and internal fixation is considered the best method for treating displaced articular fractures of the calcaneus, lateral approach is at high risk for wound healing complications. For this reason, the authors developed a posterior approach and a new implant to perform both intrafocal reduction and internal fixation. The aim of this technical note is to describe this method of treatment for displaced articular fractures of the calcaneus, which offered the following advantages: (a) the creation of a working channel that provides also a significant bone autograft, (b) the intrafocal reduction of the displaced articular surface, (c) the insertion of a locking nail that maintains the reduced articular surface at the right height, (d) the possibility to switch from an ORIF to a reconstruction arthrodesis with the same approach and instrumentation in case of severely damaged posterior facet
Visual attention and action: How cueing, direct mapping, and social interactions drive orienting
Despite considerable interest in both action perception and social attention over the last 2 decades, there has been surprisingly little investigation concerning how the manual actions of other humans orient visual attention. The present review draws together studies that have measured the orienting of attention, following observation of another’s goal-directed action. Our review proposes that, in line with the literature on eye gaze, action is a particularly strong orienting cue for the visual system. However, we additionally suggest that action may orient visual attention using mechanisms, which gaze direction does not (i.e., neural direct mapping and corepresentation). Finally, we review the implications of these gaze-independent mechanisms for the study of attention to action. We suggest that our understanding of attention to action may benefit from being studied in the context of joint action paradigms, where the role of higher level action goals and social factors can be investigated
Intrinsic nucleic acid dynamics modulates HIV-1 nucleocapsid protein binding to its targets
HIV-1 nucleocapsid protein (NC) is involved in the rearrangement of nucleic acids occurring in key steps of reverse transcription. The protein, through its two zinc fingers, interacts preferentially with unpaired guanines in single-stranded sequences. In mini-cTAR stem-loop, which corresponds to the top half of the cDNA copy of the transactivation response element of the HIV-1 genome, NC was found to exhibit a clear preference for the TGG sequence at the bottom of mini-cTAR stem. To further understand how this site was selected among several potential binding sites containing unpaired guanines, we probed the intrinsic dynamics of mini-cTAR using (13)C relaxation measurements. Results of spin relaxation time measurements have been analyzed using the model-free formalism and completed by dispersion relaxation measurements. Our data indicate that the preferentially recognized guanine in the lower part of the stem is exempt of conformational exchange and highly mobile. In contrast, the unrecognized unpaired guanines of mini-cTAR are involved in conformational exchange, probably related to transient base-pairs. These findings support the notion that NC preferentially recognizes unpaired guanines exhibiting a high degree of mobility. The ability of NC to discriminate between close sequences through their dynamic properties contributes to understanding how NC recognizes specific sites within the HIV genome
Moving Just Like You: Motor Interference Depends on Similar Motility of Agent and Observer
Recent findings in neuroscience suggest an overlap between brain regions involved in the execution of movement and perception of another’s movement. This so-called “action-perception coupling” is supposed to serve our ability to automatically infer the goals and intentions of others by internal simulation of their actions. A consequence of this coupling is motor interference (MI), the effect of movement observation on the trajectory of one’s own movement. Previous studies emphasized that various features of the observed agent determine the degree of MI, but could not clarify how human-like an agent has to be for its movements to elicit MI and, more importantly, what ‘human-like’ means in the context of MI. Thus, we investigated in several experiments how different aspects of appearance and motility of the observed agent influence motor interference (MI). Participants performed arm movements in horizontal and vertical directions while observing videos of a human, a humanoid robot, or an industrial robot arm with either artificial (industrial) or human-like joint configurations. Our results show that, given a human-like joint configuration, MI was elicited by observing arm movements of both humanoid and industrial robots. However, if the joint configuration of the robot did not resemble that of the human arm, MI could longer be demonstrated. Our findings present evidence for the importance of human-like joint configuration rather than other human-like features for perception-action coupling when observing inanimate agents
- …
