802 research outputs found
Computed tomography measures of nutrition in patients with end-stage liver disease provide a novel approach to characterize deficits
Aim
Patients with cirrhosis and end-stage liver disease (ESLD) develop severe nutrition deficits that impact on morbidity and mortality. Laboratory measures of nutrition fail to fully assess clinical deficits in muscle mass and fat stores. This study employs computed tomography imaging to assess muscle mass and subcutaneous and visceral fat stores in patients with ESLD.
Methods
This 1:1 case-control study design compares ESLD patients with healthy controls. Study patients were selected from a database of ESLD patients using a stratified method to assure a representative sample based on age, body mass index (BMI), gender, and model for end-stage liver disease score (MELD). Control patients were trauma patients with a low injury severity score (<10) who had a CT scan during evaluation. Cases and controls were matched for age +/- 5 years, gender, and BMI +/- 2.
Results
There were 90 subjects and 90 controls. ESLD patients had lower albumin levels (p<0.001), but similar total protein levels (p=0.72). ESLD patients had a deficit in muscle mass (-19%, p<0.001) and visceral fat (-13%, p<0.001), but similar subcutaneous fat (-1%, p=0.35). ESLD patients at highest risk for sarcopenia included those over age 60, BMI< 25.0, and female gender. We found degree of sarcopenia to be independent of MELD score.
Conclusions
These results support previous research demonstrating substantial nutrition deficits in ESLD patients that are not adequately measured by laboratory testing. Patients with ESLD have significant deficits of muscle and visceral fat stores, but a similar amount of subcutaneous fat
Gravity-driven instability in a spherical Hele-Shaw cell
A pair of concentric spheres separated by a small gap form a spherical
Hele-Shaw cell. In this cell an interfacial instability arises when two
immiscible fluids flow. We derive the equation of motion for the interface
perturbation amplitudes, including both pressure and gravity drivings, using a
mode coupling approach. Linear stability analysis shows that mode growth rates
depend upon interface perimeter and gravitational force. Mode coupling analysis
reveals the formation of fingering structures presenting a tendency toward
finger tip-sharpening.Comment: 13 pages, 4 ps figures, RevTex, to appear in Physical Review
Thickness Estimation of Epitaxial Graphene on SiC using Attenuation of Substrate Raman Intensity
A simple, non-invasive method using Raman spectroscopy for the estimation of
the thickness of graphene layers grown epitaxially on silicon carbide (SiC) is
presented, enabling simultaneous determination of thickness, grain size and
disorder using the spectra. The attenuation of the substrate Raman signal due
to the graphene overlayer is found to be dependent on the graphene film
thickness deduced from X-ray photoelectron spectroscopy and transmission
electron microscopy of the surfaces. We explain this dependence using an
absorbing overlayer model. This method can be used for mapping graphene
thickness over a region and is capable of estimating thickness of multilayer
graphene films beyond that possible by XPS and Auger electron spectroscopy
(AES).Comment: 14 pages, 9 figure
Abelian varieties with isogenous reductions
If A and B are abelian varieties over a number field K such that there are
non-trivial geometric homomorphisms of abelian varieties between reductions of
A and B at most primes of K, then there exists a non-trivial (geometric)
homomorphism from A to B defined over an algebraic closure of K.Comment: Final version, with French abstract; to appear in Comptes Rendus -
S\'erie Math\'ematiqu
Hyperspherical partial wave calculation for double photoionization of the helium atom at 20 eV excess energy
Hyperspherical partial wave approach has been applied here in the study of
double photoionization of the helium atom for equal energy sharing geometry at
20 eV excess energy. Calculations have been done both in length and velocity
gauges and are found to agree with each other, with the CCC results and with
experiments and exhibit some advantages of the corresponding three particle
wave function over other wave functions in use.Comment: 11 pages, 1 figure, submitted to J. Phys B: At. Mol. Opt. Phys; v2 -
revised considerably, rewritten using ioplatex clas
Dynamics of Coronal Bright Points as seen by Sun Watcher using Active Pixel System detector and Image Processing (SWAP), Atmospheric Imaging Assembly AIA), and Helioseismic and Magnetic Imager (HMI)
The \textit{Sun Watcher using Active Pixel system detector and Image
Processing}(SWAP) on board the \textit{PRoject for OnBoard Autonomy\todash 2}
(PROBA\todash 2) spacecraft provides images of the solar corona in EUV channel
centered at 174 \AA. These data, together with \textit{Atmospheric Imaging
Assembly} (AIA) and the \textit{Helioseismic and Magnetic Imager} (HMI) on
board \textit{Solar Dynamics Observatory} (SDO), are used to study the dynamics
of coronal bright points. The evolution of the magnetic polarities and
associated changes in morphology are studied using magnetograms and
multi-wavelength imaging. The morphology of the bright points seen in
low-resolution SWAP images and high-resolution AIA images show different
structures, whereas the intensity variations with time show similar trends in
both SWAP 174 and AIA 171 channels. We observe that bright points are seen in
EUV channels corresponding to a magnetic-flux of the order of Mx. We
find that there exists a good correlation between total emission from the
bright point in several UV\todash EUV channels and total unsigned photospheric
magnetic flux above certain thresholds. The bright points also show periodic
brightenings and we have attempted to find the oscillation periods in bright
points and their connection to magnetic flux changes. The observed periods are
generally long (10\todash 25 minutes) and there is an indication that the
intensity oscillations may be generated by repeated magnetic reconnection
- …
