7,518 research outputs found
Thermal suppression of surface barrier in ultrasmall superconducting structures
In the recent experiment by Cren \textit{et al.} [Phys. Rev. Lett.
\textbf{102}, 127005 (2009)], no hysteresis for vortex penetration and
expulsion from the nano-island of Pb was observed. In the present paper, we
argue that this effect can be associated with the thermoactivated surmounting
of the surface barrier by a vortex. The typical entrance (exit) time is found
analytically from the Fokker-Planck equation, written in the form suitable for
the extreme vortex confinement. We show that this time is several orders of
magnitude smaller than 1 second under the conditions of the experiment
considered. Our results thus demonstrate a possibility for the thermal
suppression of the surface barrier in nanosized low- superconductors. We
also briefly discuss other recent experiments on vortices in related
structures.Comment: 12 pages, 2 figure
Dose, exposure time, and resolution in Serial X-ray Crystallography
The resolution of X-ray diffraction microscopy is limited by the maximum dose
that can be delivered prior to sample damage. In the proposed Serial
Crystallography method, the damage problem is addressed by distributing the
total dose over many identical hydrated macromolecules running continuously in
a single-file train across a continuous X-ray beam, and resolution is then
limited only by the available molecular and X-ray fluxes and molecular
alignment. Orientation of the diffracting molecules is achieved by laser
alignment. We evaluate the incident X-ray fluence (energy/area) required to
obtain a given resolution from (1) an analytical model, giving the count rate
at the maximum scattering angle for a model protein, (2) explicit simulation of
diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency
cut off of the transfer function following iterative solution of the phase
problem, and reconstruction of an electron density map in the projection
approximation. These calculations include counting shot noise and multiple
starts of the phasing algorithm. The results indicate counting time and the
number of proteins needed within the beam at any instant for a given resolution
and X-ray flux. We confirm an inverse fourth power dependence of exposure time
on resolution, with important implications for all coherent X-ray imaging. We
find that multiple single-file protein beams will be needed for sub-nanometer
resolution on current third generation synchrotrons, but not on fourth
generation designs, where reconstruction of secondary protein structure at a
resolution of 0.7 nm should be possible with short exposures.Comment: 19 pages, 7 figures, 1 tabl
The bright optical afterglow of the nearby gamma-ray burst of 29 March 2003
Many past studies of cosmological gamma-ray bursts (GRBs) have been limited
because of the large distance to typical GRBs, resulting in faint afterglows.
There has long been a recognition that a nearby GRB would shed light on the
origin of these mysterious cosmic explosions, as well as the physics of their
fireballs. However, GRBs nearer than z=0.2 are extremely rare, with an
estimated rate of localisation of one every decade. Here, we report the
discovery of bright optical afterglow emission from GRB 030329. Our prompt
dissemination and the brilliance of the afterglow resulted in extensive
followup (more than 65 telescopes) from radio through X-ray bands, as well as
measurement of the redshift, z=0.169. The gamma-ray and afterglow properties of
GRB 030329 are similar to those of cosmological GRBs (after accounting for the
small distance), making this the nearest known cosmological GRB. Observations
have already securely identified the progenitor as a massive star that exploded
as a supernova, and we anticipate futher revelations of the GRB phenomenon from
studies of this source.Comment: 13 pages, 4 figures. Original tex
The infrared compactness-temperature relation for quiescent and starburst galaxies
IRAS observations show the existence of a correlation between the infrared
luminosity Lir and dust temperature Td in star-forming galaxies, in which
larger Lir leads to higher dust temperature. The Lir-Td relation is commonly
seen as reflecting the increase in dust temperature in galaxies with higher
star formation rate. Even though the correlation shows a significant amount of
dispersion, a unique relation has been commonly used to construct spectral
energy distributions of galaxies in distant universe studies, such as source
number counting or photometric redshift determination. In this work, we
introduce a new parameter, namely the size of the star-forming region Rir and
lay out the empirical and modelled relation between the global parameters Lir,
Td and Rir of IR-bright non-AGN galaxies. IRAS 60-to-100um color is used as a
proxy for the dust temperature and the 1.4GHz radio contiuum emission for the
infrared spatial distribution. The analysis has been carried out on two
samples. The first one is made of the galaxies from the 60um flux-limited IRAS
Revised Bright Galaxy Samples which have a reliable RC size estimate from the
VLA follow-ups of the IRAS Bright Galaxy Samples. The second is made of the
sources from the 170um ISOPHOT Serendipity Sky Survey which are resolved by the
NVSS or FIRST surveys. We show that the dispersion in the Lir-Td diagram can be
reduced to a relation between the infrared surface brightness and the dust
temperature, a relation that spans 5 orders of magnitude in surface brightness.
We explored the physical processes giving rise to the Sir-Td relation, and show
that it can be derived from the Schmidt law, which relates the star formation
rate to the gas surface density.Comment: 13 pages, 7 figures, accepted for publication in A&
Parametric Polyhedra with at least Lattice Points: Their Semigroup Structure and the k-Frobenius Problem
Given an integral matrix , the well-studied affine semigroup
\mbox{ Sg} (A)=\{ b : Ax=b, \ x \in {\mathbb Z}^n, x \geq 0\} can be
stratified by the number of lattice points inside the parametric polyhedra
. Such families of parametric polyhedra appear in
many areas of combinatorics, convex geometry, algebra and number theory. The
key themes of this paper are: (1) A structure theory that characterizes
precisely the subset \mbox{ Sg}_{\geq k}(A) of all vectors b \in \mbox{
Sg}(A) such that has at least solutions. We
demonstrate that this set is finitely generated, it is a union of translated
copies of a semigroup which can be computed explicitly via Hilbert bases
computations. Related results can be derived for those right-hand-side vectors
for which has exactly solutions or fewer
than solutions. (2) A computational complexity theory. We show that, when
, are fixed natural numbers, one can compute in polynomial time an
encoding of \mbox{ Sg}_{\geq k}(A) as a multivariate generating function,
using a short sum of rational functions. As a consequence, one can identify all
right-hand-side vectors of bounded norm that have at least solutions. (3)
Applications and computation for the -Frobenius numbers. Using Generating
functions we prove that for fixed the -Frobenius number can be
computed in polynomial time. This generalizes a well-known result for by
R. Kannan. Using some adaptation of dynamic programming we show some practical
computations of -Frobenius numbers and their relatives
Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules
This paper gives an account of our progress towards performing femtosecond
time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe
setup combining optical lasers and an X-ray Free-Electron Laser. We present
results of two experiments aimed at measuring photoelectron angular
distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and
dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss
them in the larger context of photoelectron diffraction on gas-phase molecules.
We also show how the strong nanosecond laser pulse used for adiabatically
laser-aligning the molecules influences the measured electron and ion spectra
and angular distributions, and discuss how this may affect the outcome of
future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17
Dynamics of Magnetic Flux Elements in the Solar Photosphere
The interaction of magnetic fields and convection is investigated in the
context of the coronal heating problem. We study the motions of photospheric
magnetic elements using filtergrams obtained at the Swedish Vacuum Solar
Telescope at La Palma. We use potential-field modeling to extrapolate the
magnetic and velocity fields to larger height. We find that the velocity in the
chromosphere can be locally enhanced at the separatrix surfaces between
neighboring flux tubes. The predicted velocities are several km/s,
significantly larger than those of the photospheric flux tubes, which may have
important implications for coronal heating. sComment: submitted to ApJ, 21 pages, 10 figure
Direct Evidence for Termination of Obscured Star Formation by Radiatively Driven Outflows in Reddened QSOs
We present optical to far-infrared photometry of 31 reddened QSOs that show
evidence for radiatively driven outflows originating from AGN in their
rest-frame UV spectra. We use these data to study the relationships between the
AGN-driven outflows, and the AGN and starburst infrared luminosities. We find
that FeLoBAL QSOs are invariably IR-luminous, with IR luminosities exceeding
10^{12} Solar luminosities in all cases. The AGN supplies 76% of the total IR
emission, on average, but with a range from 20% to 100%. We find no evidence
that the absolute luminosity of obscured star formation is affected by the
AGN-driven outflows. Conversely, we find an anticorrelation between the
strength of AGN-driven outflows, as measured from the range of outflow
velocities over which absorption exceeds a minimal threshold, and the
contribution from star formation to the total IR luminosity, with a much higher
chance of seeing a starburst contribution in excess of 25% in systems with weak
outflows than in systems with strong outflows. Moreover, we find no convincing
evidence that this effect is driven by the IR luminosity of the AGN. We
conclude that radiatively driven outflows from AGN can have a dramatic,
negative impact on luminous star formation in their host galaxies. We find that
such outflows act to curtail star formation such that star formation
contributes less than ~25% of the total IR luminosity. We also propose that the
degree to which termination of star formation takes place is not deducible from
the IR luminosity of the AGN.Comment: Accepted for publication in Ap
Recommended from our members
Technology and Discourse: A Comparison of Face-to-face and Telephone Employment Interviews
Very little research has investigated the comparability of telephone and face-to-face employment interviews. This exploratory study investigated interviewers' questioning strategies and applicants' causal attributions produced during semi structured telephone and face-to-face graduate recruitment interviews (N=62). A total of 2044 causal attributions were extracted from verbatim transcripts of these 62 interviews. It was predicted that an absence of visual cues would lead applicants to produce, and interviewers to focus on, information that might reduce the comparative anonymity of telephone interviews. Results indicate that applicants produce more personal causal attributions in telephone interviews. Personal attributions are also associated with higher ratings in telephone, but not face-to-face interviews. In face-to-face interviews, applicants who attributed outcomes to more global causes received lower ratings. There was also a non-significant tendency for interviewers to ask more closed questions in telephone interviews. The implications of these findings for research and practice are discussed
- …
