1,895 research outputs found

    Thermal expansion and pressure effect in MnWO4

    Full text link
    MnWO4 has attracted attention because of its ferroelectric property induced by frustrated helical spin order. Strong spin-lattice interaction is necessary to explain ferroelectricity associated with this type of magnetic order.We have conducted thermal expansion measurements along the a, b, c axes revealing the existence of strong anisotropic lattice anomalies at T1=7.8 K, the temperature of the magnetic lock-in transition into a commensurate low-temperature (reentrant paraelectric) phase. The effect of hydrostatic pressure up to 1.8 GPa on the FE phase is investigated by measuring the dielectric constant and the FE polarization. The low- temperature commensurate and paraelectric phase is stabilized and the stability range of the ferroelectric phase is diminished under pressure.Comment: 2 pages, 3 figures. SCES conference proceedings, houston, TX, 2007. to be published in Physica

    The Suppression and Recovery of the Ferroelectric Phase in Multiferroic MnWO4MnWO_4

    Full text link
    We report the discovery of a complete suppression of ferroelectricity in MnWO4MnWO_4 by 10 % iron substitution and its restoration in external magnetic fields. The spontaneous polarization in Mn0.9Fe0.1WO4Mn_{0.9}Fe_{0.1}WO_4 arises below 12 K in external fields above 4 T. The magnetic/ferroelectric phase diagram is constructed from the anomalies of the dielectric constant, polarization, magnetization, and heat capacity. The observations are qualitatively described by a mean field model with competing interactions and strong anisotropy. We propose that the magnetic field induces a non-collinear inversion symmetry breaking magnetic structure in Mn0.9Fe0.1WO4Mn_{0.9}Fe_{0.1}WO_4

    Robust Ferroelectric State in Multiferroic Mn1x_{1-x}Znx_xWO4_4

    Full text link
    We report the remarkably robust ferroelectric state in the multiferroic compound Mn1x_{1-x}Znx_xWO4_4. The substitution of the magnetic Mn2+^{2+} with nonmagnetic Zn2+^{2+} reduces the magnetic exchange and provides control of the various magnetic and multiferroic states of MnWO4_4. Only 5 % of Zn substitution results in a complete suppression of the frustrated collinear (paraelectric) low temperature phase. The helical magnetic and ferroelectric phase develops as the ground state. The multiferroic state is stable up to a high level of substitution of more than 50 %. The magnetic, thermodynamic, and dielectric properties as well as the ferroelectric polarization of single crystals of Mn1x_{1-x}Znx_xWO4_4 are studied for different substitutions up to x=0.5. The magnetic phases have been identified in single crystal neutron scattering experiments. The ferroelectric polarization scales with the neutron intensity of the incommensurate peak of the helical phase.Comment: 6 pages, 8 figure

    Pressure-Temperature Phase Diagram of Multiferroic Ni3V2O8Ni_3V_2O_8

    Full text link
    The pressure-temperature phase diagram of multiferroic Ni3V2O8Ni_3V_2O_8 is investigated for hydrostatic pressures up to 2 GPa. The stability range of the ferroelectric phase associated with the incommensurate helical spin order is reduced by pressure and ferroelectricity is completely suppressed at the critical pressure of 1.64 GPa at 6.2 K. Thermal expansion measurements at ambient pressure show strong step-like anomalies of the lattice parameters associated with the lock-in transition into the commensurate paraelectric phase. The expansion anomalies are highly anisotropic, the related volume change is consistent with the high-pressure phase diagram

    Magnetic and multiferroic phases of single-crystalline Mn0.85_{0.85}Co0.15_{0.15}WO4_4

    Full text link
    The magnetic and multiferroic phase diagram of Mn0.85_{0.85}Co0.15_{0.15}WO4_4 single crystals is investigated by means of magnetic, heat capacity, dielectric, polarization, and neutron scattering experiments. Three magnetic phase transitions are detected through distinct anomalies in all physical quantities. The ferroelectric polarization is observed only along the b-axis below 10 K but not along the a-axis as recently suggested. The magnetic phases studied by neutron scattering are very complex. Up to four different magnetic structures, partially coexisting at certain temperature ranges, have been identified. Upon decreasing temperature two commensurate phases (AF4, AF1) are followed by an incommensurate phase (AF5) and a second incommensurate phase (AF2) is detected as a minor phase. The ferroelectric polarization is possibly associated with both (AF2 and AF5) phases.Comment: 5 pages, 4 figure

    Participatory gender-sensitive approaches for addressing key climate change- related research issues: Evidence from Bangladesh, Ghana, and Uganda

    Get PDF
    Getting a better understanding of how climate variability affects rural men and women differently, and in different regions, is challenging. Since their ability to respond to change and take action that will make them more resilient and able to adapt to a changing climate (alongside all the other social and economic change they are dealing with) differs, we need to focus more research efforts on enhancing this understanding and linking this knowledge with actions aimed at enhancing livelihoods and food security. We examine how well existing participatory gender-sensitive research approaches address some key climate change-related research issues that CCAFS has prioritized. Bringing together gender experts and experienced agricultural research teams from Bangladesh, Ghana, and Uganda, multiple methods were tested in the field, and refined through the lessons learned, to help inform future action research and development efforts towards enhancing communities’ and individuals’ (particularly women’s) access to, and use of, information and knowledge to help them adapt to climate variability through more resilient livelihoods and agro-ecosystems

    Magnetoelectricity and Magnetostriction due to the Rare Earth Moment in TmAl3_3(BO3_3)4_4

    Full text link
    The magnetic properties, the magnetostriction, and the magnetoelectric effect in the d-electron free rare-earth aluminum borate TmAl3_3(BO3_3)4_4 are investigated between room temperature and 2 K. The magnetic susceptibility reveals a strong anisotropy with the hexagonal c-axis as the hard magnetic axis. Magnetostriction measurements show a large effect of an in-plane field reducing both, the a- and c-axis lattice parameters. The magnetoelectric polarization change in a- and c-directions reaches up to 300 μ\muC/m2^2 at 70 kOe with the field applied along the a-axis. The magnetoelectric polarization is proportional to the lattice contraction in magnetic field. The results of this investigation prove the existence of a significant coupling between the rare earth magnetic moment and the lattice in RRAl3_3(BO3_3)4_4 compounds (RR = rare earth). They further show that the rare earth moment itself will generate a large magnetoelectric effect which makes it easier to study and to understand the origin of the magnetoelectric interaction in this class of materials.Comment: 4 pages, 5 figure

    Using a gender lens to explore farmers’ adaptation options in the face of climate change: Results of a pilot study in Uganda

    Get PDF
    Uganda, and especially the Rakai district, is highly vulnerable to climate variability and likely to be amongst the worst hit under climate change. Any responses to climate change affected communities cannot be considered complete unless women-specific responses are interwoven in a variety of adaptation options considered in the target area. The overall objective of this short-term research was to test tools and methodologies developed by CCAFS, FAO on analysis of gender issues in climate change, agriculture and food security. The study took place from the 1–4 November 2011, in the village of Kyengeza village in Uganda

    Magnetic phase diagrams of the Kagome staircase compound Co3V2O8

    Full text link
    At zero magnetic field, a series of five phase transitions occur in Co3V2O8. The Neel temperature, TN=11.4 K, is followed by four additional phase changes at T1=8.9 K, T2=7.0 K, T3=6.9 K, and T4=6.2 K. The different phases are distinguished by the commensurability of the b-component of its spin density wave vector. We investigate the stability of these various phases under magnetic fields through dielectric constant and magnetic susceptibility anomalies. The field-temperature phase diagram of Co3V2O8 is completely resolved. The complexity of the phase diagram results from the competition of different magnetic states with almost equal ground state energies due to competing exchange interactions and frustration.Comment: Proceedings of the 2007 Conference on Strongly Correlated Electron Systems, 2 pages, 2 figure
    corecore