81 research outputs found
Upper bound on the Andreev states induced second harmonic in the Josephson coupling of YBa2Cu3O7-δ/Nb junctions from experiment and numerical simulations
Theory predicts that d-wave superconductivity induces a significant second harmonic J2 in the Josephson current, as a result of zero-energy Andreev states ZES formed at the junction interface. Consequently, anomalies such as half-integer Shapiro steps and signatures of period doubling of the dc Josephson current versus magnetic field should be observed. We performed experiments on junctions between untwinned d-wave YBa2Cu3O7-δ and Nb and found no trace of such anomalies although clear evidence of Andreev states formation is provided. These findings do not lead to an observable J2. This result combined with extensive numerical simulations put an upper bound on the ZES-induced J2 of about 0.1% from the first harmonic in the Josephson current for tunneling into the 010 direction and of about 2% for tunneling close to the 110 direction. Our results suggest strong J2 suppression by diffusive scattering, which is possibly due to nanoscale interface roughness. This is important for proposed quantum-electronic device concepts based on the expectance of J2
Andreev bound states at a cuprate grain boundary junction: A lower bound for the upper critical field
We investigate in-plane quasiparticle tunneling across thin film grain
boundary junctions (GBJs) of the electron-doped cuprate
LaCeCuO in magnetic fields up to T, perpendicular to
the CuO layers. The differential conductance in the superconducting state
shows a zero bias conductance peak (ZBCP) due to zero energy surface Andreev
bound states. With increasing temperature , the ZBCP vanishes at the
critical temperature K if B=0, and at K for B=16 T. As
the ZBCP is related to the macroscopic phase coherence of the superconducting
state, we argue that the disappearance of the ZBCP at a field
must occur below the upper critical field of the superconductor. We
find T which is at least a factor of 2.5 higher than
previous estimates of .Comment: 4 pages, 4 figure
Observation of Andreev bound states in bicrystal grain-boundary Josephson junctions of the electron doped superconductor LaCeCuO
We observe a zero-bias conductance peak (ZBCP) in the ab-plane quasiparticle
tunneling spectra of thin film grain-boundary Josephson junctions made of the
electron doped cuprate superconductor LaCeCuO. An applied magnetic field
reduces the spectral weight around zero energy and shifts it non-linearly to
higher energies consistent with a Doppler shift of the Andreev bound states
(ABS) energy. For all magnetic fields the ZBCP appears simultaneously with the
onset of superconductivity. These observations strongly suggest that the ZBCP
results from the formation of ABS at the junction interfaces, and,
consequently, that there is a sign change in the symmetry of the
superconducting order parameter of this compound consistent with a d-wave
symmetry.Comment: 9 pages, 7 figures; December 2004, accepted for publication in Phys.
Rev.
DC superconducting quantum interference devices fabricated using bicrystal grain boundary junctions in Co-doped BaFe2As2 epitaxial films
DC superconducting quantum interference devices (dc-SQUIDs) were fabricated
in Co-doped BaFe2As2 epitaxial films on (La, Sr)(Al, Ta)O3 bicrystal substrates
with 30deg misorientation angles. The 18 x 8 micro-meter^2 SQUID loop with an
estimated inductance of 13 pH contained two 3 micro-meter wide grain boundary
junctions. The voltage-flux characteristics clearly exhibited periodic
modulations with deltaV = 1.4 micro-volt at 14 K, while the intrinsic flux
noise of dc-SQUIDs was 7.8 x 10^-5 fai0/Hz^1/2 above 20 Hz. The rather high
flux noise is mainly attributed to the small voltage modulation depth which
results from the superconductor-normal metal-superconductor junction nature of
the bicrystal grain boundary
Dynamical effects of an unconventional current-phase relation in YBCO dc-SQUIDs
The predominant d-wave pairing symmetry in high temperature superconductors
allows for a variety of current-phase relations in Josephson junctions, which
is to a certain degree fabrication controlled. In this letter we report on
direct experimental observations of the effects of a non-sinusoidal
current-phase dependence in YBCO dc-SQUIDs, which agree with the theoretical
description of the system.Comment: 4 pages, 4 ps figures, to apprear in Phys. Rev. Let
Symmetry and Topology in Superconductors - Odd-frequency pairing and edge states -
Superconductivity is a phenomenon where the macroscopic quantum coherence
appears due to the pairing of electrons. This offers a fascinating arena to
study the physics of broken gauge symmetry. However, the important symmetries
in superconductors are not only the gauge invariance. Especially, the symmetry
properties of the pairing, i.e., the parity and spin-singlet/spin-triplet,
determine the physical properties of the superconducting state. Recently it has
been recognized that there is the important third symmetry of the pair
amplitude, i.e., even or odd parity with respect to the frequency. The
conventional uniform superconducting states correspond to the even-frequency
pairing, but the recent finding is that the odd-frequency pair amplitude arises
in the spatially non-uniform situation quite ubiquitously. Especially, this is
the case in the Andreev bound state (ABS) appearing at the surface/interface of
the sample. The other important recent development is on the nontrivial
topological aspects of superconductors. As the band insulators are classified
by topological indices into (i) conventional insulator, (ii) quantum Hall
insulator, and (iii) topological insulator, also are the gapped
superconductors. The influence of the nontrivial topology of the bulk states
appears as the edge or surface of the sample. In the superconductors, this
leads to the formation of zero energy ABS (ZEABS). Therefore, the ABSs of the
superconductors are the place where the symmetry and topology meet each other
which offer the stage of rich physics. In this review, we discuss the physics
of ABS from the viewpoint of the odd-frequency pairing, the topological
bulk-edge correspondence, and the interplay of these two issues. It is
described how the symmetry of the pairing and topological indices determines
the absence/presence of the ZEABS, its energy dispersion, and properties as the
Majorana fermions.Comment: 91 pages, 38 figures, Review article, references adde
Resonance phenomena in asymmetric superconducting quantum interference devices
Theory of self induced resonances in asymmetric two-junction interferometer
device is presented. In real devices it is impossible to have an ideal
interferometer free of imperfections. Thus, we extended previous theoretical
approaches introducing a model which contains several asymmetries: Josephson
current , capacitances and dissipation presented in an
equivalent circuit. Moreover, non conventional symmetry of the order parameter
in high temperature superconducting quantum interference devices forced us to
include phase asymmetries. Therefore, the model has been extended to the case
of -shift interferometers, where a phase shift is present in one of the
junctions.Comment: accepted to PRB, low quality figure
Improving high-T_c dc-SQUID performance by junction asymmetry
We study noise and noise energy of a high-T dc SQUID fabricated on a
high- substrate whose conduction properties are given by
transmission line physics. We show that transmission line resonances greatly
enhance the noise. Remarkably, resistance asymmetry enhances these resonances
even more. However, as the transfer function scales the same way, the noise
energy is reduced by asymmetry greatly enhancing the flexibility and
performance of the SQUID.Comment: 9 pages, 4 figures. v2: published versio
DEVELOPMENT OF THIN FILMS FOR SUPERCONDUCTING RF CAVITIES
Abstract Superconducting coatings for superconducting radio frequency (SRF) cavities is an intensively developing field that should ultimately lead to acceleration gradients better than those obtained by bulk Nb RF cavities. ASTeC has built and developed experimental systems for superconducting thin-film deposition, surface analysis and measurement of Residual Resistivity Ratio (RRR). Nb thin-films were deposited by magnetron sputtering in DC or pulsed DC mode (100 to 350 kHz with 50% duty cycle) with powers ranging from 100 to 600 W at various temperatures ranging from room temperature to 800 °C on Si (100) substrates. The first results gave RRR in the range from 2 to 22 with a critical temperature T c 9.5 K. Scanning electron microscopy (SEM), x-ray diffraction (XRD), electron back scattering diffraction (EBSD) and DC SQUID magnetometry revealed significant correlations between the film structure, morphology and superconducting properties
A Numerical Treatment of the Rf SQUID: II. Noise Temperature
We investigate rf SQUIDs (Superconducting QUantum Interference Devices),
coupled to a resonant input circuit, a readout tank circuit and a preamplifier,
by numerically solving the corresponding Langevin equations and optimizing
model parameters with respect to noise temperature. We also give approximate
analytic solutions for the noise temperature, which we reduce to parameters of
the SQUID and the tank circuit in the absence of the input circuit. The
analytic solutions agree with numerical simulations of the full circuit to
within 10%, and are similar to expressions used to calculate the noise
temperature of dc SQUIDs. The best device performance is obtained when
\beta_L'\equiv 2\pi L I_0\Phi_0 is 0.6 - 0.8; L is the SQUID inductance, I_0
the junction critical current and \Phi_0 the flux quantum. For a tuned input
circuit we find an optimal noise temperature T_{N,opt}\approx 3Tf/f_c, where T,
f and f_c denote temperature, signal frequency and junction characteristic
frequency, respectively. This value is only a factor of 2 larger than the
optimal noise temperatures obtained by approximate analytic theories carried
out previously in the limit \beta_L'<<1. We study the dependence of the noise
temperature on various model parameters, and give examples using realistic
device parameters of the extent to which the intrinsic noise temperature can be
realized experimentally.Comment: submitted to J. Low Temp. Phy
- …
