42,309 research outputs found
Recommended from our members
The Top Triangle Moose
We introduce a deconstructed model that incorporates both Higgsless and
top-color mechanisms. The model alleviates the typical tension in Higgsless
models between obtaining the correct top quark mass and keeping delta-rho
small. It does so by singling out the top quark mass generation as arising from
a Yukawa coupling to an effective top-Higgs which develops a small vacuum
expectation value, while electroweak symmetry breaking results largely from a
Higgsless mechanism. As a result, the heavy partners of the SM fermions can be
light enough to be seen at the LHC
Tests for injectivity of modules over commutative rings
It is proved that a module M over a commutative noetherian ring R is
injective if Ext^i((R/p)_p,M)=0 holds for every i\ge 1 and every prime ideal p
in R. This leads to the following characterization of injective modules: If F
is faithfully flat, then a module M such that Hom(F,M) is injective and
Ext^i(F,M)=0 for all i\ge 1 is injective. A limited version of this
characterization is also proved for certain non-noetherian rings.Comment: Updated bibliography. Final version to appear in Collect. Math.; 8 p
Universality Class of One-Dimensional Directed Sandpile Models
A general n-state directed `sandpile' model is introduced. The stationary
properties of the n-state model are derived for n < infty, and analytical
arguments based on a central limit theorem show that the model belongs to the
universality class of the totally asymmetric Oslo model, with a crossover to
uncorrelated branching process behavior for small system sizes. Hence, the
central limit theorem allows us to identify the existence of a large
universality class of one-dimensional directed sandpile models.Comment: 4 pages, 2 figure
Solar radiation observation stations with complete listing of data archived by the National Climatic Center, Asheville, North Carolina and initial listing of data not currently archived
A listing is provided of organizations taking solar radiation data, the 166 stations where observations are made, the type of equipment used, the form of the recorded data, and the period of operation of each station. Included is a listing of the data from 150 solar radiation stations collected over the past 25 years and stored by the National Climatic Center
The Top Triangle Moose
We introduce a deconstructed model that incorporates both Higgsless and
top-color mechanisms. The model alleviates the typical tension in Higgsless
models between obtaining the correct top quark mass and keeping delta-rho
small. It does so by singling out the top quark mass generation as arising from
a Yukawa coupling to an effective top-Higgs which develops a small vacuum
expectation value, while electroweak symmetry breaking results largely from a
Higgsless mechanism. As a result, the heavy partners of the SM fermions can be
light enough to be seen at the LHC.Comment: To appear in proceedings of SCGT09, Nagoya, Japan. 5 page
Spin-Driven Nematic Instability of the Multi-Orbital Hubbard Model: Application to Iron-Based Superconductors
Nematic order resulting from the partial melting of density-waves has been
proposed as the mechanism to explain nematicity in iron-based superconductors.
An outstanding question, however, is whether the microscopic electronic model
for these systems -- the multi-orbital Hubbard model -- displays such an
ordered state as its leading instability. In contrast to usual electronic
instabilities, such as magnetic and charge order, this fluctuation-driven
phenomenon cannot be captured by the standard RPA method. Here, by including
fluctuations beyond RPA in the multi-orbital Hubbard model, we derive its
nematic susceptibility and contrast it with its ferro-orbital order
susceptibility, showing that its leading instability is the spin-driven nematic
phase. Our results also demonstrate the primary role played by the
orbital in driving the nematic transition, and reveal that high-energy magnetic
fluctuations are essential to stabilize nematic order in the absence of
magnetic order.Comment: 8 pages, 6 figure
Parity violation and the nature of charges
The origin of parity violation in physics is still unknown. At the present
time, it is introduced in the theory by requiring that the SU(2) subgroup
entering the description of interactions involves the left components. In the
present contribution, one elaborates upon a suggestion made by Landau that
particles and antiparticles could be like "stereo-isomeric" molecules, which
would naturally provides parity violation. Particles and antiparticles could
thus be combinations of the parity doublets associated with a chiral symmetry
realized in the Wigner-Weyl mode. Consequences of such a description and the
possible problems it could raise are examined.Comment: 3 pages, contribution to the 3rd international workshop: "From parity
violation to hadronic structure and more ..." (PAVI06), to appear in the
proceedings (EPJA
Identifying Student Difficulties with Entropy, Heat Engines, and the Carnot Cycle
We report on several specific student difficulties regarding the Second Law
of Thermodynamics in the context of heat engines within upper-division
undergraduates thermal physics courses. Data come from ungraded written
surveys, graded homework assignments, and videotaped classroom observations of
tutorial activities. Written data show that students in these courses do not
clearly articulate the connection between the Carnot cycle and the Second Law
after lecture instruction. This result is consistent both within and across
student populations. Observation data provide evidence for myriad difficulties
related to entropy and heat engines, including students' struggles in reasoning
about situations that are physically impossible and failures to differentiate
between differential and net changes of state properties of a system. Results
herein may be seen as the application of previously documented difficulties in
the context of heat engines, but others are novel and emphasize the subtle and
complex nature of cyclic processes and heat engines, which are central to the
teaching and learning of thermodynamics and its applications. Moreover, the
sophistication of these difficulties is indicative of the more advanced
thinking required of students at the upper division, whose developing knowledge
and understanding give rise to questions and struggles that are inaccessible to
novices
High temperature thermoelectric efficiency in Ba8Ga16Ge30
The high thermoelectric figure of merit (zT) of Ba8Ga16Ge30 makes it one of the best n-type materials for thermoelectric power generation. Here, we describe the synthesis and characterization of a Czochralski pulled single crystal of Ba8Ga16Ge30 and polycrystalline disks. Measurements of the electrical conductivity, Hall effect, specific heat, coefficient of thermal expansion, thermal conductivity, and Seebeck coefficient were performed up to 1173 K and compared with literature results. Dilatometry measurements give a coefficient of thermal expansion of 16×10^−6 K^−1 up to 1175 K. The trend in electronic properties with composition is typical of a heavily doped semiconductor. The maximum in the thermoelectric figure of merit is found at 1050 K with a value of 0.8. The correction of zT due to thermal expansion is not significant compared to the measurement uncertainties involved. Comparing the thermoelectric efficiency of segmented materials, the effect of compatibility makes Ba8Ga16Ge30 more efficient than the higher zT n-type materials SiGe or skutterudite CoSb3
- …
