2,358 research outputs found
Quenching of lamellar ordering in an n-alkane embedded in nanopores
We present an X-ray diffraction study of the normale alkane nonadecane
C_{19}H_{40} embedded in nanoporous Vycor glass. The confined molecular crystal
accomplishes a close-packed structure by alignment of the rod-like molecules
parallel to the pore axis while sacrificing one basic principle known from the
bulk state, i.e. the lamellar ordering of the molecules. Despite this disorder,
the phase transitions observed in the confined solid mimic the phase behavior
of the 3D unconfined crystal, though enriched by the appearance of a true
rotator phase known only from longer alkane chains.Comment: 7 pages, 3 figure
Probing scalar particle and unparticle couplings in e+ e- -> t tbar with transversely polarized beams
In searching for indications of new physics scalar particle and unparticle
couplings in e^+ e^- \to t\bar t, we consider the role of transversely
polarized initial beams at e^+ e^- colliders. By using a general relativistic
spin density matrix formalism for describing the particles spin states, we find
analytical expressions for the squared amplitude of the process with t or \bar
t polarization measured, including the anomalous coupling contributions. Thanks
to the transversely polarized initial beams these contributions are first order
anomalous coupling corrections to the Standard Model (SM) contributions. We
present and analyse the main features of the SM and anomalous coupling
contributions. We show how differences between SM and anomalous coupling
contributions provide means to search for anomalous coupling manifestations at
future e^+ e^- linear colliders.Comment: 28 pages in LaTeX, including 7 encapsulated PostScript figures,
published versio
Time Reversal Violation from the entangled B0-antiB0 system
We discuss the concepts and methodology to implement an experiment probing
directly Time Reversal (T) non-invariance, without any experimental connection
to CP violation, by the exchange of "in" and "out" states. The idea relies on
the B0-antiB0 entanglement and decay time information available at B factories.
The flavor or CP tag of the state of the still living neutral meson by the
first decay of its orthogonal partner overcomes the problem of irreversibility
for unstable systems, which prevents direct tests of T with incoherent particle
states. T violation in the time evolution between the two decays means
experimentally a difference between the intensities for the time-ordered (l^+
X, J/psi K_S) and (J/psi K_L, l^- X) decays, and three other independent
asymmetries. The proposed strategy has been applied to simulated data samples
of similar size and features to those currently available, from which we
estimate the significance of the expected discovery to reach many standard
deviations.Comment: 17 pages, 2 figures, 6 table
Analogue Models for T and CPT Violation in Neutral-Meson Oscillations
Analogue models for CP violation in neutral-meson systems are studied in a
general framework. No-go results are obtained for models in classical mechanics
that are nondissipative or that involve one-dimensional oscillators. A complete
emulation is shown to be possible for a two-dimensional oscillator with
rheonomic constraints, and an explicit example with spontaneous T and CPT
violation is presented. The results have implications for analogue models with
electrical circuits.Comment: 9 page
The Origin of Time Asymmetry
It is argued that the observed Thermodynamic Arrow of Time must arise from
the boundary conditions of the universe. We analyse the consequences of the no
boundary proposal, the only reasonably complete set of boundary conditions that
has been put forward. We study perturbations of a Friedmann model containing a
massive scalar field but our results should be independent of the details of
the matter content. We find that gravitational wave perturbations have an
amplitude that remains in the linear regime at all times and is roughly time
symmetric about the time of maximum expansion. Thus gravitational wave
perturbations do not give rise to an Arrow of Time. However density
perturbations behave very differently. They are small at one end of the
universe's history, but grow larger and become non linear as the universe gets
larger. Contrary to an earlier claim, the density perturbations do not get
small again at the other end of the universe's history. They therefore give
rise to a Thermodynamic Arrow of Time that points in a constant direction while
the universe expands and contracts again. The Arrow of Time does not reverse at
the point of maximum expansion. One has to appeal to the Weak Anthropic
Principle to explain why we observe the Thermodynamic Arrow to agree with the
Cosmological Arrow, the direction of time in which the universe is expanding.Comment: 41 pages, DAMTP R92/2
Direct CP Violation, Branching Ratios and Form Factors , in Decays
The and transitions involved in hadronic B decays are
investigated in a phenomenological way through the framework of QCD
factorization. By comparing our results with experimental branching ratios from
the BELLE, BABAR and CLEO Collaborations for all the B decays including either
a pion or a kaon, we propose boundaries for the transition form factors and depending on the CKM matrix element parameters and
. From this analysis, the form factors required to reproduce the
experimental data for branching ratios are and
. We calculate the direct CP violating asymmetry
parameter, , for and decays, in the case where mixing effects are taken into
account. Based on these results, we find that the direct CP asymmetry for
, ,
, and , reaches its maximum when the invariant mass is
in the vicinity of the meson mass. The inclusion of
mixing provides an opportunity to erase, without ambiguity, the phase
uncertainty mod in the determination of the CKM angles in case
of and in case of .Comment: 74 pages, 15 figures, 8 tables. A few misprints corrected, two
references adde
phase shifts and CP Violation in Decay
In the study of CP violation signals in {\O}\to\pi\Xi nonleptonic decays,
the strong =3/2 and phase shifts for the final-state
interactions are needed. These phases are calculated using an effective
Lagrangian model, including , (1530), and the -term,
in the intermediate states. The -term is calculated in terms of the
scalar form factor of the baryon.Comment: 6 pages, 2 figure
Boundary lubrication with a glassy interface
Recently introduced constitutive equations for the rheology of dense,
disordered materials are investigated in the context of stick-slip experiments
in boundary lubrication. The model is based on a generalization of the shear
transformation zone (STZ) theory, in which plastic deformation is represented
by a population of mesoscopic regions which may undergo non affine deformations
in response to stress. The generalization we study phenomenologically
incorporates the effects of aging and glassy relaxation. Under experimental
conditions associated with typical transitions from stick-slip to steady
sliding and stop start tests, these effects can be dominant, although the full
STZ description is necessary to account for more complex, chaotic transitions
- …
