22,299 research outputs found

    Fermi liquid theory of ultra-cold trapped Fermi gases: Implications for Pseudogap Physics and Other Strongly Correlated Phases

    Full text link
    We show how Fermi liquid theory can be applied to ultra-cold Fermi gases, thereby expanding their "simulation" capabilities to a class of problems of interest to multiple physics sub-disciplines. We introduce procedures for measuring and calculating position dependent Landau parameters. This lays the ground work for addressing important controversial issues: (i) the suggestion that thermodynamically, the normal state of a unitary gas is indistinguishable from a Fermi liquid (ii) that a fermionic system with strong repulsive contact interactions is associated with either ferromagnetism or localization; this relates as well to 3^3He and its p-wave superfluidity.Comment: 4 pages, 2 figures, revised versio

    Electron tomography at 2.4 {\AA} resolution

    Full text link
    Transmission electron microscopy (TEM) is a powerful imaging tool that has found broad application in materials science, nanoscience and biology(1-3). With the introduction of aberration-corrected electron lenses, both the spatial resolution and image quality in TEM have been significantly improved(4,5) and resolution below 0.5 {\AA} has been demonstrated(6). To reveal the 3D structure of thin samples, electron tomography is the method of choice(7-11), with resolutions of ~1 nm^3 currently achievable(10,11). Recently, discrete tomography has been used to generate a 3D atomic reconstruction of a silver nanoparticle 2-3 nm in diameter(12), but this statistical method assumes prior knowledge of the particle's lattice structure and requires that the atoms fit rigidly on that lattice. Here we report the experimental demonstration of a general electron tomography method that achieves atomic scale resolution without initial assumptions about the sample structure. By combining a novel projection alignment and tomographic reconstruction method with scanning transmission electron microscopy, we have determined the 3D structure of a ~10 nm gold nanoparticle at 2.4 {\AA} resolution. While we cannot definitively locate all of the atoms inside the nanoparticle, individual atoms are observed in some regions of the particle and several grains are identified at three dimensions. The 3D surface morphology and internal lattice structure revealed are consistent with a distorted icosahedral multiply-twinned particle. We anticipate that this general method can be applied not only to determine the 3D structure of nanomaterials at atomic scale resolution(13-15), but also to improve the spatial resolution and image quality in other tomography fields(7,9,16-20).Comment: 27 pages, 17 figure

    W-band waveguide-packaged InP HEMT reflection grid amplifier

    Get PDF
    This letter presents a 79-GHz broadband reflection-type grid amplifier using spatial power combining to combine the power of 64 unit cells. Each unit cell uses a two-stage cascade configuration with InP HEMTs arranged as a differential pair. A broadband orthogonal mode transducer (OMT) separates two orthogonally polarized input and output signals over a 75 to 85GHz range. In conjunction with the OMT, a mode converter with quadruple-ridged apertures was designed to enhance the field uniformity over the active grid. Measurements show 5-dB small signal gain at 79GHz and an 800-MHz 3-dB bandwidth. The amplifier generates an output power of 264mW with little evidence of saturation

    Higgs Triplets, Decoupling, and Precision Measurements

    Full text link
    Electroweak precision data has been extensively used to constrain models containing physics beyond that of the Standard Model. When the model contains Higgs scalars in representations other than SU(2) singlets or doublets, and hence rho not equal to one at tree level, a correct renormalization scheme requires more inputs than the three needed for the Standard Model. We discuss the connection between the renormalization of models with Higgs triplets and the decoupling properties of the models as the mass scale for the scalar triplet field becomes much larger than the electroweak scale. The requirements of perturbativity of the couplings and agreement with electroweak data place strong restrictions on models with Higgs triplets. Our results have important implications for Little Higgs type models and other models with rho not equal to one at tree level.Comment: 23 page

    Quark energy loss and shadowing in nuclear Drell-Yan process

    Full text link
    The energy loss effect in nuclear matter is another nuclear effect apart from the nuclear effects on the parton distribution as in deep inelastic scattering process. The quark energy loss can be measured best by the nuclear dependence of the high energy nuclear Drell-Yan process. By means of three kinds of quark energy loss parameterizations given in literature and the nuclear parton distribution extracted only with lepton-nucleus deep inelastic scattering experimental data, measured Drell-Yan production cross sections are analyzed for 800GeV proton incident on a variety of nuclear targets from FNAL E866. It is shown that our results with considering the energy loss effect are much different from these of the FNAL E866 who analysis the experimental data with the nuclear parton distribution functions obtained by using the deep inelastic lA collisions and pA nuclear Drell-Yan data . Considering the existence of energy loss effect in Drell-Yan lepton pairs production,we suggest that the extraction of nuclear parton distribution functions should not include Drell-Yan experimental data.Comment: 12 page

    Topological quantization of energy transport in micro- and nano-mechanical lattices

    Full text link
    Topological effects typically discussed in the context of quantum physics are emerging as one of the central paradigms of physics. Here, we demonstrate the role of topology in energy transport through dimerized micro- and nano-mechanical lattices in the classical regime, i.e., essentially "masses and springs". We show that the thermal conductance factorizes into topological and non-topological components. The former takes on three discrete values and arises due to the appearance of edge modes that prevent good contact between the heat reservoirs and the bulk, giving a length-independent reduction of the conductance. In essence, energy input at the boundary mostly stays there, an effect robust against disorder and nonlinearity. These results bridge two seemingly disconnected disciplines of physics, namely topology and thermal transport, and suggest ways to engineer thermal contacts, opening a direction to explore the ramifications of topological properties on nanoscale technology.Comment: 6 pages, 3 figures; Supplemental information included as an ancillary fil
    corecore