15,933 research outputs found

    Modelling Dust Evolution in Galaxies with a Multiphase, Inhomogeneous ISM

    Get PDF
    We develop a model of dust evolution in a multiphase, inhomogeneous ISM including dust growth and destruction processes. The physical conditions for grain evolution are taken from hydrodynamical simulations of giant molecular clouds in a Milky Way-like spiral galaxy. We improve the treatment of dust growth by accretion in the ISM to investigate the role of the temperature-dependent sticking coefficient and ion-grain interactions. From detailed observational data on the gas-phase Si abundances [Si/H]_{gas} measured in the local Galaxy, we derive a relation between the average [Si/H]_{gas} and the local gas density n(H) which we use as a critical constraint for the models. This relation requires a sticking coefficient that decreases with the gas temperature. The synthetic relation constructed from the spatial dust distribution reproduces the slope of -0.5 of the observed relation in cold clouds. This slope is steeper than that for the warm medium and is explained by the dust growth. We find that it occurs for all adopted values of the minimum grain size a_{min} from 1 to 5nm. For the classical cut-off of a_{min}=5 nm, the ion-grain interactions result in longer growth timescales and higher [Si/H]_{gas} than the observed values. For a_{min} below 3 nm, the ion-grain interactions enhance the growth rates, steepen the slope of [Si/H]_{gas}-n(H) relation and provide a better match to observations. The rates of dust re-formation in the ISM by far exceed the rates of dust production by stellar sources as expected from simple evolution models. After the cycle of matter in and out of dust reaches a steady state, the dust growth balances the destruction operating on similar timescales of 350 Myr.Comment: 17 pages, 11 figures, accepted to Ap

    Investigation of critical slowing down in a bistable S-SEED

    Get PDF
    A simulation of S-SEED switching based upon experimental data is developed that includes the effect of critical slowing down. The simulation's accuracy is demonstrated by close agreement with the results from experimental S-SEED switching. The simulation is subsequently used to understand how the phenomenon of critical slowing down applies to switching of an S-SEED and how the effect on photonic analog-to-digital (A/D) converter performance may be minimized.B. A. Clare, K. A. Corbett, K. J. Grant, P. B. Atanackovic, W. Marwood and J. Munc

    Convicts and coolies : rethinking indentured labour in the nineteenth century

    Get PDF
    This article seeks to shift the frame of analysis within which discussions of Indian indentured migration take place. It argues that colonial discourses and practices of indenture are best understood not with regard to the common historiographical framework of whether it was 'a new system of slavery', but in the context of colonial innovations in incarceration and confinement. The article shows how Indian experiences of and knowledge about transportation overseas to penal settlements informed in important ways both their own understandings and representations of migration and the colonial practices associated with the recruitment of indentured labour. In detailing the connections between two supposedly different labour regimes, it thus brings a further layer of complexity to debates around their supposed distinctions

    Hydrothermal activity lowers trophic diversity in Antarctic sedimented hydrothermal vents

    Get PDF
    Sedimented hydrothermal vents are those in which hydrothermal fluid vents through sediment and are among the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermally active and off-vent areas of the Bransfield Strait (1050–1647 m depth). Microbial composition, biomass and fatty acid signatures varied widely between and within vent and non-vent sites and provided evidence of diverse metabolic activity. Several species showed diverse feeding strategies and occupied different trophic positions in vent and non-vent areas and stable isotope values of consumers were generally not consistent with feeding structure morphology. Niche area and the diversity of microbial fatty acids reflected trends in species diversity and was lowest at the most hydrothermally active site. Faunal utilisation of chemosynthetic activity was relatively limited but was detected at both vent and non-vent sites as evidenced by carbon and sulphur isotopic signatures, suggesting that the hydrothermal activity can affect trophodynamics over a much wider area than previously thought

    Step-Wise Computational Synthesis of Fullerene C60 derivatives. 1.Fluorinated Fullerenes C60F2k

    Full text link
    The reactions of fullerene C60 with atomic fluorine have been studied by unrestricted broken spin-symmetry Hartree-Fock (UBS HF) approach implemented in semiempirical codes based on AM1 technique. The calculations were focused on a sequential addition of fluorine atom to the fullerene cage following indication of the cage atom highest chemical susceptibility that is calculated at each step. The effectively-non-paired-electron concept of the fullerene atoms chemical susceptibility lays the foundation of the suggested computational synthesis. The obtained results are analyzed from energetic, symmetry, and the composition abundance viewpoints. A good fitting of the data to experimental findings proves a creative role of the suggested synthesis methodology.Comment: 33 pages, 11 figures, 2 tables, 2 chart

    Direct Nitrous Oxide Emissions From Tropical And Sub-Tropical Agricultural Systems : A Review and Modelling of Emission Factors

    Get PDF
    We acknowledge the financial support from the CGIAR Research Programs on Climate Change, Agriculture and Food Security (CCAFS). Grant ref. n. P25.Peer reviewedPublisher PD

    Sociology of low expectations: Recalibration as innovation work in biomedicine

    Get PDF
    "This article is distributed under the terms of the Creative Commons Attribution 3.0 License (http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (http://www.uk.sagepub.com/aboutus/openaccess.htm). "Social scientists have drawn attention to the role of hype and optimistic visions of the future in providing momentum to biomedical innovation projects by encouraging innovation alliances. In this article, we show how less optimistic, uncertain, and modest visions of the future can also provide innovation projects with momentum. Scholars have highlighted the need for clinicians to carefully manage the expectations of their prospective patients. Using the example of a pioneering clinical team providing deep brain stimulation to children and young people with movement disorders, we show how clinicians confront this requirement by drawing on their professional knowledge and clinical expertise to construct visions of the future with their prospective patients; visions which are personalized, modest, and tainted with uncertainty. We refer to this vision-constructing work as recalibration, and we argue that recalibration enables clinicians to manage the tension between the highly optimistic and hyped visions of the future that surround novel biomedical interventions, and the exigencies of delivering those interventions in a clinical setting. Drawing on work from science and technology studies, we suggest that recalibration enrolls patients in an innovation alliance by creating a shared understanding of how the “effectiveness” of an innovation shall be judged.This project was funded by the Wellcome Trust (Wellcome Trust Biomedical Strategic Award 086034)

    The Dilemma of Foraging Herbivores: Dealing with Food and Fear

    Get PDF
    For foraging herbivores, both food quality and predation risk vary across the landscape. Animals should avoid low-quality food patches in favour of high-quality ones, and seek safe patches while avoiding risky ones. Herbivores often face the foraging dilemma, however, of choosing between high-quality food in risky places or low-quality food in safe places. Here, we explore how and why the interaction between food quality and predation risk affects foraging decisions of mammalian herbivores, focusing on browsers confronting plant toxins in a landscape of fear. We draw together themes of plant–herbivore and predator–prey interactions, and the roles of animal ecophysiology, behaviour and personality. The response of herbivores to the dual costs of food and fear depends on the interplay of physiology and behaviour. We discuss detoxification physiology in dealing with plant toxins, and stress physiology associated with perceived predation risk. We argue that behaviour is the interface enabling herbivores to stay or quit food patches in response to their physiological tolerance to these risks. We hypothesise that generalist and specialist herbivores perceive the relative costs of plant defence and predation risk differently and intra-specifically, individuals with different personalities and physiologies should do so too, creating individualised landscapes of food and fear. We explore the ecological significance and emergent impacts of these individual-based foraging outcomes on populations and communities, and offer predictions that can be clearly tested. In doing so, we provide an integrated platform advancing herbivore foraging theory with food quality and predation risk at its core

    On the accuracy and reproducibility of a novel probabilistic atlas-based generation for calculation of head attenuation maps on integrated PET/MR scanners

    Get PDF
    Purpose To propose an MR-based method for generating continuous-valued head attenuation maps and to assess its accuracy and reproducibility. Demonstrating that novel MR-based photon attenuation correction methods are both accurate and reproducible is essential prior to using them routinely in research and clinical studies on integrated PET/MR scanners. Methods Continuous-valued linear attenuation coefficient maps (“μ-maps”) were generated by combining atlases that provided the prior probability of voxel positions belonging to a certain tissue class (air, soft tissue, or bone) and an MR intensity-based likelihood classifier to produce posterior probability maps of tissue classes. These probabilities were used as weights to generate the μ-maps. The accuracy of this probabilistic atlas-based continuous-valued μ-map (“PAC-map”) generation method was assessed by calculating the voxel-wise absolute relative change (RC) between the MR-based and scaled CT-based attenuation-corrected PET images. To assess reproducibility, we performed pair-wise comparisons of the RC values obtained from the PET images reconstructed using the μ-maps generated from the data acquired at three time points. Results The proposed method produced continuous-valued μ-maps that qualitatively reflected the variable anatomy in patients with brain tumor and agreed well with the scaled CT-based μ-maps. The absolute RC comparing the resulting PET volumes was 1.76 ± 2.33 %, quantitatively demonstrating that the method is accurate. Additionally, we also showed that the method is highly reproducible, the mean RC value for the PET images reconstructed using the μ-maps obtained at the three visits being 0.65 ± 0.95 %. Conclusion Accurate and highly reproducible continuous-valued head μ-maps can be generated from MR data using a probabilistic atlas-based approach.National Institutes of Health (U.S.) (grant 1R01EB014894-01A1)United States. Department of Defense (National Defense Science & Engineering Graduate Fellowship (NDSEG) Program
    corecore