1,204 research outputs found

    Fiducial Stellar Population Sequences for the u'g'r'i'z' System

    Full text link
    We describe an extensive observational project that has obtained high-quality and homogeneous photometry for a number of different Galactic star clusters (including M 92, M 13, M 3, M 71, and NGC 6791) spanning a wide range in metallicity (-2.3<[Fe/H]<+0.4), as observed in the u'g'r'i'z' passbands with the MegaCam wide-field imager on the Canada-France-Hawaii Telescope. By employing these purest of stellar populations, fiducial sequences have been defined from color-magnitude diagrams that extend from the tip of the red-giant branch down to approximately 4 magnitudes below the turnoff: these sequences have been accurately calibrated to the standard u'g'r'i'z' system via a set of secondary photometric standards located within these same clusters. Consequently, they can serve as a valuable set of empirical fiducials for the interpretation of stellar populations data in the u'g'r'i'z' system.Comment: 16 pages, 7 tables, 13 figures; accepted for publication in A

    Reducing microwave loss in superconducting resonators due to trapped vortices

    Get PDF
    Microwave resonators with high quality factors have enabled many recent breakthroughs with superconducting qubits and photon detectors, typically operated in shielded environments to reduce the ambient magnetic field. Insufficient shielding or pulsed control fields can introduce vortices, leading to reduced quality factors, although increased pinning can mitigate this effect. A narrow slot etched into the resonator surface provides a straightforward method for pinning enhancement without otherwise affecting the resonator. Resonators patterned with such a slot exhibited over an order of magnitude reduction in the excess loss due to vortices compared with identical resonators from the same film with no slot

    Application of Spectroscopic Doppler Velocimetry for Measurement of Streamwise Vorticity

    Get PDF
    A spectroscopic Doppler velocimetry technique has been developed for measuring two transverse components of velocity and hence streamwise vorticity in free jet flows. The nonintrusive optical measurement system uses Mie scattering from a 200 mW green continuous-wave laser interacting with dust and other tracer particulates naturally present in the air flow to measure the velocities. Scattered light is collected in two opposing directions to provide measurements of two orthogonal velocity components. An air-spaced Fabry-Perot interferometer is used for spectral analysis to determine the optical frequency shift between the incident laser light and the Mie scattered light. This frequency shift is directly proportional to the velocity component in the direction of the bisector of the incident and scattered light wave propagation vectors. Data were acquired for jet Mach numbers of 1.73 and 0.99 using a convergent 1.27-cm diameter round nozzle fitted with a single triangular "delta-tab". The velocity components and the streamwise vorticity calculated from the measurements are presented. The results demonstrate the ability of this novel optical system to obtain velocity and vorticity data without any artificial seeding and using a low power laser system

    Dipole-induced vortex ratchets in superconducting films with arrays of micromagnets

    Full text link
    We investigate the transport properties of superconducting films with periodic arrays of in-plane magnetized micromagnets. Two different magnetic textures are studied: a square array of magnetic bars and a close-packed array of triangular microrings. As confirmed by MFM imaging, the magnetic state of both systems can be adjusted to produce arrays of almost point-like magnetic dipoles. By carrying out transport measurements with ac drive, we observed experimentally a recently predicted ratchet effect induced by the interaction between superconducting vortices and the magnetic dipoles. Moreover, we find that these magnetic textures produce vortex-antivortex patterns, which have a crucial role on the transport properties of this hybrid system.Comment: 4 pages, 4 figure

    Background Oriented Schlieren Applied to Study Shock Spacing in a Screeching Circular Jet

    Get PDF
    Background oriented schlieren (BOS) is a recent development of the schlieren and shadowgraph methods. The BOS technique has the ability to provide visualizations of the density gradient in both the axial and radial directions. The resultant magnitude of the density gradients allows for comparison with shadowgraph images. This paper first compares data obtained by the BOS and shadowgraph techniques at identical conditions in a free jet. The patterns and spacing of the shock trains obtained by the two techniques are found to be consistent with one another. This provides confidence in the shock spacing measurement by the BOS technique. Due to its simpler setup, BOS is then applied to investigate the shock spacing associated with the screech phenomenon, especially during stage jumps. Screech frequencies from a 37.6 mm convergent nozzle, as a function of jet Mach number (M(sub j)), are shown to exhibit various stages. As many as eight stages are identified with the present nozzle over the range 1.0 < M(sub j) <1.7. BOS images are acquired at various screech conditions and the shock spacing is examined as a function of M(sub j)

    High-resolution measurements of surface topography with airborne laser altimetry and the global positioning system

    Get PDF
    Recently, an airborne lidar system that measures laser pulse time-of-flight and the distortion of the pulse waveform upon reflection from earth surface terrain features was developed and is now operational. This instrument is combined with Global Positioning System (GPS) receivers and a two-axis gyroscope for accurate recovery of aircraft position and pointing attitude. The laser altimeter system is mounted on a high-altitude aircraft platform and operated in a repetitively-pulsed mode for measurements of surface elevation profiles at nadir. The laser transmitter makes use of recently developed short-pulse diode-pumped solid-state laser technology in Q-switched Nd:YAG operating at its fundamental wavelength of 1064 nm. A reflector telescope and silicon avalanche photodiode are the basis of the optical receiver. A high-speed time-interval unit and a separate high-bandwidth waveform digitizer under microcomputer control are used to process the backscattered pulses for measurements of terrain. Other aspects of the lidar system are briefly discussed

    Geometrical edge barriers and magnetization in superconducting strips with slits

    Full text link
    We theoretically investigate the magnetic-field and current distributions for coplanar superconducting strips with slits in an applied magnetic field H_a. We consider ideal strips with no bulk pinning and calculate the hysteretic behavior of the magnetic moment m_y as a function of H_a due solely to geometrical edge barriers. We find that the m_y-H_a curves are strongly affected by the slits. In an ascending field, the m_y-H_a curves exhibit kink or peak structures, because the slits prevent penetration of magnetic flux. In a descending field, m_y becomes positive, because magnetic flux is trapped in the slits, in contrast to the behavior of a single strip without slits, for which m_y =0.Comment: 11 pages, 5 figures, revtex

    Thin superconducting disk with B-dependent Jc: Flux and current distributions

    Full text link
    The critical state in a superconducting thin circular disk with an arbitrary magnetic field dependence of the critical sheet current, Jc(B), is analyzed. With an applied field Ba perpendicular to the disk, a set of coupled integral equations for the flux and current distributions is derived. The equations are solved numerically, and flux and current profiles are presented graphically for several commonly used Jc(B) dependences. It is shown that for small Ba the flux penetration depth can be described by an effective Bean model with a renormalized Jc entering the leading term. We argue that these results are qualitatively correct for thin superconductors of any shape. The results contrast the parallel geometry behavior, where at small Ba the B-dependence of the critical current can be ignored.Comment: RevTeX, 7 pages including 8 figure

    Vector magnetic hysteresis of hard superconductors

    Full text link
    Critical state problems which incorporate more than one component for the magnetization vector of hard superconductors are investigated. The theory is based on the minimization of a cost functional C[H(x)]{\cal C}[\vec{H}(\vec{x})] which weighs the changes of the magnetic field vector within the sample. We show that Bean's simplest prescription of choosing the correct sign for the critical current density JcJ_c in one dimensional problems is just a particular case of finding the components of the vector Jc\vec{J}_c. Jc\vec{J}_c is determined by minimizing C{\cal C} under the constraint JΔ(H,x)\vec{J}\in\Delta (\vec{H},\vec{x}), with Δ\Delta a bounded set. Upon the selection of different sets Δ\Delta we discuss existing crossed field measurements and predict new observable features. It is shown that a complex behavior in the magnetization curves may be controlled by a single external parameter, i.e.: the maximum value of the applied magnetic field HmH_m.Comment: 10 pages, 9 figures, accepted in Phys. Rev.

    Critical state theory for nonparallel flux line lattices in type-II superconductors

    Full text link
    Coarse-grained flux density profiles in type-II superconductors with non-parallel vortex configurations are obtained by a proposed phenomenological least action principle. We introduce a functional C[H(x)]C[H(x)], which is minimized under a constraint of the kind JJ belongs to DeltaDelta for the current density vector, where DeltaDelta is a bounded set. This generalizes the concept of critical current density introduced by C. P. Bean for parallel vortex configurations. In particular, we choose the isotropic case (DeltaDelta is a circle), for which the field penetration profiles H(x,t)H(x,t) are derived when a changing external excitation is applied. Faraday's law, and the principle of minimum entropy production rate for stationary thermodynamic processes dictate the evolution of the system. Calculations based on the model can reproduce the physical phenomena of flux transport and consumption, and the striking effect of magnetization collapse in crossed field measurements.Comment: The compiled TeX document length is 10 pages. Two figures (one page each) are also included The paper is accepted for publication in Phys. Rev. Let
    corecore