155 research outputs found

    Vacuum entanglement enhancement by a weak gravitational field

    Full text link
    Separate regions in space are generally entangled, even in the vacuum state. It is known that this entanglement can be swapped to separated Unruh-DeWitt detectors, i.e., that the vacuum can serve as a source of entanglement. Here, we demonstrate that, in the presence of curvature, the amount of entanglement that Unruh-DeWitt detectors can extract from the vacuum can be increased.Comment: 6 pages, 1 figur

    Local entanglement generation in the adiabatic regime

    Full text link
    We study entanglement generation in a pair of qubits interacting with an initially correlated system. Using time independent perturbation theory and the adiabatic theorem, we show conditions under which the qubits become entangled as the joint system evolves into the ground state of the interacting theory. We then apply these results to the case of qubits interacting with a scalar quantum field. We study three different variations of this setup; a quantum field subject to Dirichlet boundary conditions, a quantum field interacting with a classical potential and a quantum field that starts in a thermal state.Comment: 9 pages, 6 figures. v2: reference [14] adde

    Calibrating CHIME, A New Radio Interferometer to Probe Dark Energy

    Full text link
    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use CHIME to map neutral hydrogen in the frequency range 400 -- 800\,MHz over half of the sky, producing a measurement of baryon acoustic oscillations (BAO) at redshifts between 0.8 -- 2.5 to probe dark energy. We have deployed a pathfinder version of CHIME that will yield constraints on the BAO power spectrum and provide a test-bed for our calibration scheme. I will discuss the CHIME calibration requirements and describe instrumentation we are developing to meet these requirements

    Limits on the ultra-bright Fast Radio Burst population from the CHIME Pathfinder

    Full text link
    We present results from a new incoherent-beam Fast Radio Burst (FRB) search on the Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder. Its large instantaneous field of view (FoV) and relative thermal insensitivity allow us to probe the ultra-bright tail of the FRB distribution, and to test a recent claim that this distribution's slope, αlogNlogS\alpha\equiv-\frac{\partial \log N}{\partial \log S}, is quite small. A 256-input incoherent beamformer was deployed on the CHIME Pathfinder for this purpose. If the FRB distribution were described by a single power-law with α=0.7\alpha=0.7, we would expect an FRB detection every few days, making this the fastest survey on sky at present. We collected 1268 hours of data, amounting to one of the largest exposures of any FRB survey, with over 2.4\,×\times\,105^5\,deg2^2\,hrs. Having seen no bursts, we have constrained the rate of extremely bright events to < ⁣13<\!13\,sky1^{-1}\,day1^{-1} above \sim\,220(τ/ms)\sqrt{(\tau/\rm ms)} Jy\,ms for τ\tau between 1.3 and 100\,ms, at 400--800\,MHz. The non-detection also allows us to rule out α0.9\alpha\lesssim0.9 with 95%\% confidence, after marginalizing over uncertainties in the GBT rate at 700--900\,MHz, though we show that for a cosmological population and a large dynamic range in flux density, α\alpha is brightness-dependent. Since FRBs now extend to large enough distances that non-Euclidean effects are significant, there is still expected to be a dearth of faint events and relative excess of bright events. Nevertheless we have constrained the allowed number of ultra-intense FRBs. While this does not have significant implications for deeper, large-FoV surveys like full CHIME and APERTIF, it does have important consequences for other wide-field, small dish experiments

    Canadian Hydrogen Intensity Mapping Experiment (CHIME) Pathfinder

    Full text link
    A pathfinder version of CHIME (the Canadian Hydrogen Intensity Mapping Experiment) is currently being commissioned at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC. The instrument is a hybrid cylindrical interferometer designed to measure the large scale neutral hydrogen power spectrum across the redshift range 0.8 to 2.5. The power spectrum will be used to measure the baryon acoustic oscillation (BAO) scale across this poorly probed redshift range where dark energy becomes a significant contributor to the evolution of the Universe. The instrument revives the cylinder design in radio astronomy with a wide field survey as a primary goal. Modern low-noise amplifiers and digital processing remove the necessity for the analog beamforming that characterized previous designs. The Pathfinder consists of two cylinders 37\,m long by 20\,m wide oriented north-south for a total collecting area of 1,500 square meters. The cylinders are stationary with no moving parts, and form a transit instrument with an instantaneous field of view of \sim100\,degrees by 1-2\,degrees. Each CHIME Pathfinder cylinder has a feedline with 64 dual polarization feeds placed every \sim30\,cm which Nyquist sample the north-south sky over much of the frequency band. The signals from each dual-polarization feed are independently amplified, filtered to 400-800\,MHz, and directly sampled at 800\,MSps using 8 bits. The correlator is an FX design, where the Fourier transform channelization is performed in FPGAs, which are interfaced to a set of GPUs that compute the correlation matrix. The CHIME Pathfinder is a 1/10th scale prototype version of CHIME and is designed to detect the BAO feature and constrain the distance-redshift relation.Comment: 20 pages, 12 figures. submitted to Proc. SPIE, Astronomical Telescopes + Instrumentation (2014

    SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope

    Full text link
    We describe the design of a new polarization sensitive receiver, SPT-3G, for the 10-meter South Pole Telescope (SPT). The SPT-3G receiver will deliver a factor of ~20 improvement in mapping speed over the current receiver, SPTpol. The sensitivity of the SPT-3G receiver will enable the advance from statistical detection of B-mode polarization anisotropy power to high signal-to-noise measurements of the individual modes, i.e., maps. This will lead to precise (~0.06 eV) constraints on the sum of neutrino masses with the potential to directly address the neutrino mass hierarchy. It will allow a separation of the lensing and inflationary B-mode power spectra, improving constraints on the amplitude and shape of the primordial signal, either through SPT-3G data alone or in combination with BICEP-2/KECK, which is observing the same area of sky. The measurement of small-scale temperature anisotropy will provide new constraints on the epoch of reionization. Additional science from the SPT-3G survey will be significantly enhanced by the synergy with the ongoing optical Dark Energy Survey (DES), including: a 1% constraint on the bias of optical tracers of large-scale structure, a measurement of the differential Doppler signal from pairs of galaxy clusters that will test General Relativity on ~200 Mpc scales, and improved cosmological constraints from the abundance of clusters of galaxies.Comment: 21 pages, 9 figures. To be published in Proceedings of SPIE Volume 9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014, conference 915

    Design and Bolometer Characterization of the SPT-3G First-year Focal Plane

    Get PDF
    During the austral summer of 2016-17, the third-generation camera, SPT-3G, was installed on the South Pole Telescope, increasing the detector count in the focal plane by an order of magnitude relative to the previous generation. Designed to map the polarization of the cosmic microwave background, SPT-3G contains ten 6-in-hexagonal modules of detectors, each with 269 trichroic and dual-polarization pixels, read out using 68x frequency-domain multiplexing. Here we discuss design, assembly, and layout of the modules, as well as early performance characterization of the first-year array, including yield and detector properties.Comment: Conference proceeding for Low Temperature Detectors 2017. Accepted for publication: 27 August 201
    corecore