4,179 research outputs found
Anorexia, Capacity, and Best Interests: Developments in the Court of Protection Since the Mental Capacity Act 2005
Vapor phase growth technique and system for several 3-5 compound semiconductors Quarterly technical report
Vapor phase growth technique and system for group 3A and 5A compound semiconductor
Non-contact ultrasonic detection of angled surface defects
Non-destructive testing is an important technique, and improvements are constantly needed. Surface defects in metals are not necessarily confined to orientations normal to the sample surface; however, much of the previous work investigating the interaction of ultrasonic surface waves with surface-breaking defects has assumed cracks inclined at 90° to the surface. This paper explores the interaction of Rayleigh waves with cracks which have a wide range of angles and depths relative to the surface, using a non-contact laser generation and detection system. Additional insight is acquired using a 3D model generated using finite element method software. A clear variation of the reflection and transmission coefficients with both crack angle and length is found, in both the out-of-plane and in-plane components. The 3D model is further used to understand the contributions of different wavemodes to B-Scans produced when scanning a sample, to enable understanding of the reflection and transmission behaviour, and help identify angled defects. Knowledge of these effects is essential to correctly gauge the severity of surface cracking
Scanning laser source and scanning laser detection techniques for different surface crack geometries
Standard test samples typically contain simulated defects such as slots machined normal to the surface. However, real defects will not always propagate in this manner; for example, rolling contact fatigue on rails propagates at around 25º to the surface, and corrosion cracking can grow in a branched manner. Therefore, there is a need to understand how ultrasonic surface waves interact with different crack geometries. We present measurements of machined slots inclined at an angle to the surface normal, or with simple branched geometries, using laser ultrasound. Recently, Rayleigh wave enhancements observed when using the scanning laser source technique, where a generation laser is scanned along a sample, have been highlighted for their potential in detecting surface cracks. We show that the enhancement measured with laser detector scanning can give a more significant enhancement when different crack geometries are considered. We discuss the behaviour of an incident Rayleigh wave in the region of an angled defect, and consider mode-conversions which lead to a very large enhancement when the detector is close to the opening of a shallow defect. This process could be used in characterising defects, as well as being an excellent fingerprint of their presence
Interaction of laser generated ultrasonic waves with wedge-shaped samples
Wedge-shaped samples can be used as a model of acoustic interactions with samples ranging from ocean wedges, to angled defects such as rolling contact fatigue, to thickness measurements of samples with non-parallel faces. We present work on laser generated ultrasonic waves on metal samples; one can measure the dominant Rayleigh-wave mode, but longitudinal and shear waves are also generated. We present calculations, models, and measurements giving the dependence of the arrival times and amplitudes of these modes on the wedge apex angle and the separation of generation and detection points, and hence give a measure of the wedge characteristics
Scanning laser techniques for characterisation of different surface breaking defect geometries
Measurements using a laser scanning system consisting of a pulsed Nd:YAG laser to generate surface ultrasonic
waves and an interferometer to detect the surface displacement, are presented for different samples and defect geometries. We show, firstly, details of the interaction of Rayleigh waves in thick samples with machined slots inclined at an angle to the surface normal, or with simple branched geometries, scanning the generation source over the defect (SLLS) or scanning the detection point over the defect (SLD). Secondly, we discuss effects of Lamb waves interacting with V-shaped defects in thin samples. The results from these measurements have shown that the signal enhancement found in the near-field in both cases can be used to position the defect and gain an idea of its geometry, and have shown this to be a suitable fingerprint of the presence of the defect
Bronchial Circulation Angiogenesis in the Rat Quantified with SPECT and Micro-CT
Introduction
As pulmonary artery obstruction results in proliferation of the bronchial circulation in a variety of species, we investigated this angiogenic response using single photon emission computed tomography (SPECT) and micro-CT. Materials and methods
After surgical ligation of the left pulmonary artery of rats, they were imaged at 10, 20, or 40 days post-ligation. Before imaging, technetium-labeled macroaggregated albumin (99mTc MAA) was injected into the aortic arch (IA) labeling the systemic circulation. SPECT/micro-CT imaging was performed, the image volumes were registered, and activity in the left lung via the bronchial circulation was used as a marker of bronchial blood flow. To calibrate and to verify successful ligation, 99mTc MAA was subsequently injected into the left femoral vein (IV), resulting in accumulation within the pulmonary circulation. The rats were reimaged, and the ratio of the IA to the IV measurements reflected the fraction of cardiac output (CO) to the left lung via the bronchial circulation. Control and sham-operated rats were studied similarly. Results
The left lung bronchial circulation of the control group was 2.5% of CO. The sham-operated rats showed no significant difference from the control. However, 20 and 40 days post-ligation, the bronchial circulation blood flow had increased to 7.9 and 13.9%, respectively, of CO. Excised lungs examined after barium filling of the systemic vasculature confirmed neovascularization as evidenced by tortuous vessels arising from the mediastinum and bronchial circulation. Conclusion
Thus, we conclude that SPECT/micro-CT imaging is a valuable methodology for monitoring angiogenesis in the lung and, potentially, for evaluating the effects of pro- or anti-angiogenic treatments using a similar approach
Farm poultry management : for 4-H poultry projects I and II
Accompanied by: Leader's guide : 4-H poultry project (to be used with Circular 75), March, 1945.Cover title.Includes "4-H Record" at end.I. Young stock production -- II. Flock management
Challenging the orthodoxy: union learning representatives as organic intellectuals
Teacher education and continuing professional development have become a key areas of controversy in England since the period of school sector restructuring following the 1988 Education Reform Act. More recently teacher training and professional development have often been used to promote and reinforce a narrow focus on the government’s ‘standards agenda’. However, the emerging discourse of ‘new professionalism’ has raised the profile of professional development in schools, and together with union learning representatives, there are opportunities to secure real improvements in teachers’ access to continuing professional development. This paper argues however that union learning representatives must go beyond advocating for better access to professional development and should raise more fundamental questions about the nature of professional development and the education system it serves. Drawing on Gramsci’s notion of the ‘organic intellectual’, the paper argues that union learning representatives have a key role as organisers of ideas – creating spaces in which the ideological dominance of current policy orthodoxy might be challenged
Comparison of measured and EF5-r derived N₂O fluxes from a spring-fed river
There is considerable uncertainty in the estimates of indirect N₂O emissions as defined by the Intergovernmental Panel on Climate Change's (IPCC) methodology. Direct measurements of N₂O yields and fluxes in aquatic river environments are sparse and more data are required to determine the role that rivers play in the global N₂O budget.
The objectives of this research were to measure the N₂O fluxes from a spring-fed river, relate these fluxes to the dissolved N₂O concentrations and NO₃–N loading of the river, and to try and define the indirect emission factor (EF5-r) for the river.
Gas bubble ebullition was observed at the river source with bubbles containing 7.9 µL N₂O L⁻¹. River NO₃–N and dissolved N₂O concentrations ranged from 2.5 to 5.3 mg L⁻¹ and 0.4 to 1.9 µg N₂O-N L⁻¹ respectively with N₂O saturation reaching 404%. Floating headspace chambers were used to sample N₂O fluxes. N₂O–N fluxes were significantly related to dissolved N₂O–N concentrations (r² = 30.6) but not to NO₃–N concentrations. The N₂O–N fluxes ranged from 38-501 µg m⁻² h⁻¹, averaging 171 µg m⁻² h⁻¹ (± Std. Dev. 85) overall. The measured N₂O–N fluxes equated to an EF5-r of only 6.6% of that calculated using the IPCC methodology, and this itself was considered to be an over-estimate due to the degassing of antecedent dissolved N₂O present in the groundwater that fed the river
- …
