938 research outputs found
Effects of Vacancies on Properties of Relaxor Ferroelectrics: a First-Principles Study
A first-principles-based model is developed to investigate the influence of
lead vacancies on the properties of relaxor ferroelectric Pb(Sc1/2Nb1/2)O3
(PSN). Lead vacancies generate large, inhomogeneous, electric fields that
reduce barriers between energy minima for different polarization directions.
This naturally explains why relaxors with significant lead vacancy
concentrations have broadened dielectric peaks at lower temperatures, and why
lead vacancies smear properties in the neighborhood of the ferroelectric
transition in PSN. We also reconsider the conventional wisdom that lead
vacancies reduce the magnitude of dielectric response.Comment: 11 pages, 1 figur
Enhancement of piezoelectricity in a mixed ferroelectric
We use first-principles density-functional total energy and polarization
calculations to calculate the piezoelectric tensor at zero temperature for both
cubic and simple tetragonal ordered supercells of Pb_3GeTe_4. The largest
piezoelectric coefficient for the tetragonal configuration is enhanced by a
factor of about three with respect to that of the cubic configuration. This can
be attributed to both the larger strain-induced motion of cations relative to
anions and higher Born effective charges in the tetragonal case. A normal mode
decomposition shows that both cation ordering and local relaxation weaken the
ferroelectric instability, enhancing piezoelectricity.Comment: 5 pages, revtex, 2 eps figure
The Sleep Or Mood Novel Adjunctive therapy (SOMNA) trial: a study protocol for a randomised controlled trial evaluating an internet-delivered cognitive behavioural therapy program for insomnia on outcomes of standard treatment for depression in men
BACKGROUND: Insomnia is a significant risk factor for depression onset, can result in more disabling depressive illness, and is a common residual symptom following treatment cessation that can increase the risk of relapse. Internet-based cognitive behavioural therapy for insomnia has demonstrated efficacy and acceptability to men who are less likely than women to seek help in standard care. We aim to evaluate whether internet delivered cognitive behavioural therapy for insomnia as an adjunct to a standard depression therapeutic plan can lead to improved mood outcomes.METHODS/DESIGN: Male participants aged 50 years or more, meeting Diagnostic and Statistical Manual of Mental Disorders criteria for current Major Depressive Episode and/or Dysthymia and self-reported insomnia symptoms, will be screened to participate in a single-centre double-blind randomised controlled trial with two parallel groups involving adjunctive internet-delivered cognitive behavioural therapy for insomnia and an internet-based control program. The trial will consist of a nine-week insomnia intervention period with a six-month follow-up period. During the insomnia intervention period participants will have their depression management coordinated by a psychiatrist using standard guideline-based depression treatments. The study will be conducted in urban New South Wales, Australia, where 80 participants from primary and secondary care and direct from the local community will be recruited. The primary outcome is change in the severity of depressive symptoms from baseline to week 12. DISCUSSION: This study will provide evidence on whether a widely accessible, evidence-based, internet-delivered cognitive behavioural therapy for insomnia intervention can lead to greater improvements than standard treatment for depression alone, in a group who traditionally do not readily access psychotherapy. The study is designed to establish effect size, feasibility and processes associated with implementing e-health solutions alongside standard clinical care, to warrant undertaking a larger more definitive clinical trial.Trial registration: Australian and New Zealand Clinical Trials Registry ACTRN12612000985886.The study is supported by beyondblue: the national depression and anxiety
initiative National Priority Driven Research Program and funded through a
donation from the Movember Foundation
Dislocation constriction and cross-slip in Al and Ag: an ab initio study
A novel model based on the Peierls framework of dislocations is developed.
The new theory can deal with a dislocation spreading at more than one slip
planes. As an example, we study dislocation cross-slip and constriction process
of two fcc metals, Al and Ag. The energetic parameters entering the model are
determined from ab initio calculations. We find that the screw dislocation in
Al can cross-slip spontaneously in contrast with that in Ag, which splits into
partials and cannot cross-slip without first being constricted. The dislocation
response to an external stress is examined in detail. We determine dislocation
constriction energy and critical stress for cross-slip, and from the latter, we
estimate the cross-slip energy barrier for the straight screw dislocations
Lattice dielectric response of CdCu{3}Ti{4}O{12} and of CaCu{3}Ti{4}O{12} from first principles
Structural, vibrational, and lattice dielectric properties of
CdCu{3}Ti{4}O{12} are studied using density-functional theory within the local
spin-density approximation, and the results are compared with those computed
previously for CaCu{3}Ti{4}O{12}. Replacing Ca with Cd is found to leave many
calculated quantities largely unaltered, although significant differences do
emerge in zone-center optical phonon frequencies and mode effective charges.
The computed phonon frequencies of CdCu{3}Ti{4}O{12} are found to be in
excellent agreement with experiment, and the computed lattice contribution to
the intrinsic static dielectric constant (~60) also agrees exceptionally well
with a recent optical absorption experiment. These results provide further
support for a picture in which the lattice dielectric response is essentially
conventional, suggesting an extrinsic origin for the anomalous low-frequency
dielectric response recently observed in both materials.Comment: 5 pages; uses REVTEX macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/lh_cdct/index.htm
Statistical Mechanics of Vacancy and Interstitial Strings in Hexagonal Columnar Crystals
Columnar crystals contain defects in the form of vacancy/interstitial loops
or strings of vacancies and interstitials bounded by column ``heads'' and
``tails''. These defect strings are oriented by the columnar lattice and can
change size and shape by movement of the ends and forming kinks along the
length. Hence an analysis in terms of directed living polymers is appropriate
to study their size and shape distribution, volume fraction, etc. If the
entropy of transverse fluctuations overcomes the string line tension in the
crystalline phase, a string proliferation transition occurs, leading to a
supersolid phase. We estimate the wandering entropy and examine the behaviour
in the transition regime. We also calculate numerically the line tension of
various species of vacancies and interstitials in a triangular lattice for
power-law potentials as well as for a modified Bessel function interaction
between columns as occurs in the case of flux lines in type-II superconductors
or long polyelectrolytes in an ionic solution. We find that the centered
interstitial is the lowest energy defect for a very wide range of interactions;
the symmetric vacancy is preferred only for extremely short interaction ranges.Comment: 22 pages (revtex), 15 figures (encapsulated postscript
Graphing and Grafting Graphene: Classifying Finite Topological Defects
The structure of finite-area topological defects in graphene is described in
terms of both the direct honeycomb lattice and its dual triangular lattice.
Such defects are equivalent to cutting out a patch of graphene and replacing it
with a different patch with the same number of dangling bonds. An important
subset of these defects, bound by a closed loop of alternating 5- and
7-membered carbon rings, explains most finite-area topological defects that
have been experimentally observed. Previously unidentified defects seen in
scanning tunneling microscope (STM) images of graphene grown on SiC are
identified as isolated divacancies or divacancy clusters
- …
