951 research outputs found
Surface melting of the vortex lattice
We discuss the effect of an (ab)-surface on the melting transition of the
pancake-vortex lattice in a layered superconductor within a density functional
theory approach. Both discontinuous and continuous surface melting are
predicted for this system, although the latter scenario occupies the major part
of the low-field phase diagram. The formation of a quasi-liquid layer below the
bulk melting temperature inhibits the appearance of a superheated solid phase,
yielding an asymmetric hysteretic behavior which has been seen in experiments.Comment: 4 pages, 3 figure
Dissociation of vortex stacks into fractional-flux vortices
We discuss the zero field superconducting phase transition in a finite system
of magnetically coupled superconducting layers. Transverse screening is
modified by the presence of other layers resulting in topological excitations
with fractional flux. Vortex stacks trapping a full flux and present at any
finite temperature undergo an evaporation transition which corresponds to the
depairing of fractional-flux vortices in individual layers. We propose an
experiment with a bi-layer system allowing us to identify the dissociation of
bound vortex molecules.Comment: 4 pages, 1 figure; revised version, to appear in Phys. Rev. Let
Surface Melting of the Vortex Lattice in Layered Superconductors: Density Functional Theory
We study the effects of an -surface on the vortex-solid to vortex-liquid
transition in layered superconductors in the limit of vanishing inter-layer
Josephson coupling. We derive the interaction between pancake vortices in a
semi-infinite sample and adapt the density functional theory of freezing to
this system. We obtain an effective one-component order-parameter theory which
can be used to describe the effects of the surface on vortex-lattice melting.
Due to the absence of protecting layers in the neighbourhood of the surface,
the vortex lattice formed near the surface is more susceptible to thermal
fluctuations. Depending on the value of the magnetic field, we predict either a
continuous or a discontinuous surface melting transition. For intermediate
values of the magnetic field, the surface melts continuously, assisting the
formation of the liquid phase and suppressing hysteresis above the melting
transition, a prediction consistent with experimental results. For very low and
very high magnetic fields, the surface melts discontinuously. The two different
surface melting scenarios are separated by two surface multicritical points,
which we locate on the melting line.Comment: 16 pages, 12 figure
Quantitative analysis of shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy
Shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy
(XMCD-PEEM) is a recent technique, in which the photon intensity in the shadow
of an object lying on a surface, may be used to gather information about the
three-dimensional magnetization texture inside the object. Our purpose here is
to lay the basis of a quantitative analysis of this technique. We first discuss
the principle and implementation of a method to simulate the contrast expected
from an arbitrary micromagnetic state. Text book examples and successful
comparison with experiments are then given. Instrumental settings are finally
discussed, having an impact on the contrast and spatial resolution : photon
energy, microscope extraction voltage and plane of focus, microscope background
level, electric-field related distortion of three-dimensional objects, Fresnel
diffraction or photon scattering
Extensive degeneracy, Coulomb phase and magnetic monopoles in an artificial realization of the square ice model
Artificial spin ice systems have been introduced as a possible mean to
investigate frustration effects in a well-controlled manner by fabricating
lithographically-patterned two-dimensional arrangements of interacting magnetic
nanostructures. This approach offers the opportunity to visualize
unconventional states of matter, directly in real space, and triggered a wealth
of studies at the frontier between nanomagnetism, statistical thermodynamics
and condensed matter physics. Despite the strong efforts made these last ten
years to provide an artificial realization of the celebrated square ice model,
no simple geometry based on arrays of nanomagnets succeeded to capture the
macroscopically degenerate ground state manifold of the corresponding model.
Instead, in all works reported so far, square lattices of nanomagnets are
characterized by a magnetically ordered ground state consisting of local
flux-closure configurations with alternating chirality. Here, we show
experimentally and theoretically, that all the characteristics of the square
ice model can be observed if the artificial square lattice is properly
designed. The spin configurations we image after demagnetizing our arrays
reveal unambiguous signatures of an algebraic spin liquid state characterized
by the presence of pinch points in the associated magnetic structure factor.
Local excitations, i.e. classical analogues of magnetic monopoles, are found to
be free to evolve in a massively degenerated, divergence-free vacuum. We thus
provide the first lab-on-chip platform allowing the investigation of collective
phenomena, including Coulomb phases and ice-like physics.Comment: 26 pages, 10 figure
Propellants
There is little doubt that explosives had their origin in warfare. In the armed conflict between groups of individuals or of states, where each sought and still seeks to impose its will upon the other by force, it was inevitable that arms should grow and flourish. The sling, the bow and arrow, the sword and firearm typify evolution in warfare weapons. Bs a means of propelling missiles, the gun and gun powder were thought of. The history of explosives, therefore, may be said to begin with black powder
Two-photon Lithography for 3D Magnetic Nanostructure Fabrication
Ferromagnetic materials have been utilised as recording media within data
storage devices for many decades. Confinement of the material to a two
dimensional plane is a significant bottleneck in achieving ultra-high recording
densities and this has led to the proposition of three dimensional (3D)
racetrack memories that utilise domain wall propagation along nanowires.
However, the fabrication of 3D magnetic nanostructures of complex geometry is
highly challenging and not easily achievable with standard lithography
techniques. Here, by using a combination of two-photon lithography and
electrochemical deposition, we show a new approach to construct 3D magnetic
nanostructures of complex geometry. The magnetic properties are found to be
intimately related to the 3D geometry of the structure and magnetic imaging
experiments provide evidence of domain wall pinning at a 3D nanostructured
junction
Intelligence within BAOR and NATO's Northern Army Group
During the Cold War the UK's principal military role was its commitment to the North Atlantic Treaty Organisation (NATO) through the British Army of the Rhine (BAOR), together with wartime command of NATO's Northern Army Group. The possibility of a surprise attack by the numerically superior Warsaw Pact forces ensured that great importance was attached to intelligence, warning and rapid mobilisation. As yet we know very little about the intelligence dimension of BAOR and its interface with NATO allies. This article attempts to address these neglected issues, ending with the impact of the 1973 Yom Kippur War upon NATO thinking about warning and surprise in the mid-1970s. It concludes that the arrangements made by Whitehall for support to BAOR from national assets during crisis or transition to war were - at best - improbable. Accordingly, over the years, BAOR developed its own unique assets in the realm of both intelligence collection and special operations in order to prepare for the possible outbreak of conflict
- …
