57 research outputs found
Development, Simulation-Based Design and Metal Forming Production of Patient-Individual Hip Cups
Influence of Assumed Boundary Conditions Derived from MBS on Numerically Simulated Strain-Adaptive Bone Remodeling in the Pelvis after Total Hip Replacement
Numerical analysis of the biomechanical complications accompanying the total hip replacement with NANOS-Prosthetic: bone remodelling and prosthesis migration
Aseptic loosening of the prosthesis is still a problem in artificial joint implants. The ýloosening can be caused by the resorption of the bone surrounding ýthe prosthesis according to stress shielding. A numerical model was developed and validated by means of DEXA-studies in order to ýanalyse the bone remodelling process in the periprosthetic bone. A total loss of about 3.7% of the bone density in the periprosthetic Femur with NANOS is computed. The bone remodelling calculation was validated by means of a DEXA-study with a 3-years-follow-up. The model was further developed in order to be able to calculate and consider the migration of the implants. This method was applied on the ýNANOS-implant with a computed total migration of about 0.43 mm. These calculations showed good results in comparison with a 2-year-follow-up clinical study, whereby a RSA-method was used to determine the stem migration in the bone. In order to ýstudy the mutual influence between the implant migration and the hip contact forces ý, a software is developed by our scientific group to couple a multi body simulation (MBS) of human lower limps with the FEA of the periprosthetic Femur
Comparison between simulation results and DEXA investigation of the bone remodelling after implanting a cementless long stem hip prosthesis
Die patientenspezifische Implantation der OSG-TEP - biomechanische Testung eines neuen Systems
Numerical Investigations of the Strain-Adaptive Bone Remodeling in the Prosthetic Pelvis
Comparison of Anatomic Structures at Risk With 2 Lateral Lengthening Calcaneal Osteotomies
Life and mechanosensitivity.
Abstract Background Aseptic loosening due to bone remodelling processes after total hip replacement is one common cause for revision surgery. In human medicine, dual-energy X-ray absorptiometry (DEXA) is the gold standard for quantitative evaluation of bone mineral density, whereas in veterinary medicine conventional radiography is used for follow-up studies. Recently, a method has been described using digital X-ray images for quantitative assessment of grey scale values of bone contrast. Therefore, the aim of the present study was to evaluate the correlation of bone mineral density (BMD) measured by DEXA with grey scale values (GV) measured in digital X-ray images (RX50, RX66) ex vivo. Results The measured GV in the chosen X-ray settings showed on average a good correlation (r = 0.61) to the measured BMD with DEXA. Correlation between the two X-ray settings was very good (r = 0.81). For comparisons among regions of interests (ROIs) a difference of 8.2% was found to be statistically significant, whereas in the case of RX50 and RX66 differences of 5.3% and 4.1% were found to be statistically significant. Conclusions Results indicate that measuring absolute changes in bone mineral density might be possible using digital radiography. Not all significant differences between ROIs detectable with DEXA can be displayed in the X-ray images because of the lower sensitivity of the radiographs. However, direct comparison of grey scale values of the periprosthetic femur in one individual patient during the follow-up period, in order to predict bone remodelling processes, should be possible, but with a lesser sensitivity than with DEXA. It is important that the same X-ray settings are chosen for each patient for follow-up studies
- …
