1,387 research outputs found
Spin noise spectroscopy to probe quantum states of ultracold fermionic atomic gases
Ultracold alkali atoms provide experimentally accessible model systems for
probing quantum states that manifest themselves at the macroscopic scale.
Recent experimental realizations of superfluidity in dilute gases of ultracold
fermionic (half-integer spin) atoms offer exciting opportunities to directly
test theoretical models of related many-body fermion systems that are
inaccessible to experimental manipulation, such as neutron stars and
quark-gluon plasmas. However, the microscopic interactions between fermions are
potentially quite complex, and experiments in ultracold gases to date cannot
clearly distinguish between the qualitatively different microscopic models that
have been proposed. Here, we theoretically demonstrate that optical
measurements of electron spin noise -- the intrinsic, random fluctuations of
spin -- can probe the entangled quantum states of ultracold fermionic atomic
gases and unambiguously reveal the detailed nature of the interatomic
interactions. We show that different models predict different sets of
resonances in the noise spectrum, and once the correct effective interatomic
interaction model is identified, the line-shapes of the spin noise can be used
to constrain this model. Further, experimental measurements of spin noise in
classical (Boltzmann) alkali vapors are used to estimate the expected signal
magnitudes for spin noise measurements in ultracold atom systems and to show
that these measurements are feasible
Spin degree of freedom in two dimensional exciton condensates
We present a theoretical analysis of a spin-dependent multicomponent
condensate in two dimensions. The case of a condensate of resonantly
photoexcited excitons having two different spin orientations is studied in
detail. The energy and the chemical potentials of this system depend strongly
on the spin polarization . When electrons and holes are located in two
different planes, the condensate can be either totally spin polarized or spin
unpolarized, a property that is measurable. The phase diagram in terms of the
total density and electron-hole separation is discussed.Comment: 4 pages, 3 figures, Accepted for publication in Physical Review
Letter
Sondage archéologique sur l'oppidum du Camp de César à Laudun-l'Ardoise. Étude d'une structure du Haut-Empire réutilisée au cours de l'Antiquité tardive.
National audienceDans le cadre des recherches sur les dynamiques de peuplement dans la basse vallée de la Cèze, le sondage réalisé dans cette structure en bordure orientale de l'oppidum du Camp de César à Laudun-l'Ardoise (Gard), a permis d'établir sa construction au cours du Ier siècle de notre ère et de sa réfection au cours des Ve-VIe siècles. L'abondance de mobilier céramique tardo-républicain, et du Haut-Empire, au sein du bâti ou en stratigraphie, ne permettent pas de dater exclusivement cette structure de l'Antiquité tardive, bien que les couches tardo-antiques directement au contact de l'affleurement rocheux, sont un terminus post quem recevable pour la datation de la réfection du bâtiment. Il semble qu'au cours des Ve-VIe siècles de nouveaux constructeurs ont procédé à des terrassements mettant à jour les maçonneries préexistantes du Ier siècle, qui ont alors été réutilisées
IC 225: a dwarf elliptical galaxy with a peculiar blue core
We present the discovery of a peculiar blue core in the elliptical galaxy IC
225 by using images and spectrum from the Sloan Digital Sky Survey (SDSS). The
outer parts of the surface brightness profiles of u-, g-, r-, i- and z-band
SDSS images for IC 225 are well fitted with an exponential function. The
fitting results show that IC 225 follows the same relations between the
magnitude, scale length and central surface brightness for dwarf elliptical
galaxies. Its absolute blue magnitude (M_B) is -17.14 mag, all of which suggest
that IC 225 is a typical dwarf elliptical galaxy. The g-r color profile
indicates a very blue core with a radius of 2 arcseconds, which is also clearly
seen in the RGB image made of g-, r- and i-band SDSS images. The SDSS optical
spectrum exhibits strong and very narrow nebular emission lines. The metal
abundances derived by the standard methods, which are 12+log(O/H) = 8.98,
log(N/O) = -0.77 and 12+log(S+/H+) = 6.76, turn out to be significantly higher
than that predicted by the well-known luminosity-metallicity relation. After
carefully inspecting the central region of IC 225, we find that there are two
distinct nuclei, separated by 1.4 arcseconds, the off-nucleated one is even
bluer than the nucleus of IC 225. The asymmetric line profiles of higher-order
Balmer lines indicate that the emission lines are bluer shifted relative to the
absorption lines, suggesting that the line emission arises from the off-center
core, whose nature is a metal-rich Hii region. To the best of our knowledge, it
is the first high-metallicity Hii region detected in a dwarf elliptical galaxy.Comment: 7 figures, accepted for publication in A
vHOG, a multispecies vertebrate ontology of homologous organs groups
Motivation: Most anatomical ontologies are species-specific, whereas a framework for comparative studies is needed. We describe the vertebrate Homologous Organs Groups ontology, vHOG, used to compare expression patterns between species. Results: vHOG is a multispecies anatomical ontology for the vertebrate lineage. It is based on the HOGs used in the Bgee database of gene expression evolution. vHOG version 1.4 includes 1184 terms, follows OBO principles and is based on the Common Anatomy Reference Ontology (CARO). vHOG only describes structures with historical homology relations between model vertebrate species. The mapping to species-specific anatomical ontologies is provided as a separate file, so that no homology hypothesis is stated within the ontology itself. Each mapping has been manually reviewed, and we provide support codes and references when available. Availability and implementation: vHOG is available from the Bgee download site (http://bgee.unil.ch/), as well as from the OBO Foundry and the NCBO Bioportal websites. Contact: [email protected]; [email protected]
The Crab pulsar light curve in the soft gamma ray range: FIGARO II results
The FIGARO II experiment (a large area, balloon borne, crystal scintillator detector working from 0.15 to 4.3 MeV) observed the Crab pulsar on 1990 Jul. 9 for about seven hours. The study of the pulse profile confirms some structures detected with a low significance during the shorter observation of 1986, and adds new important elements to the picture. In particular, between the two main peaks, two secondary peaks appear centered at phase values 0.1 and 0.3, in the energy range 0.38 to 0.49 MeV; in the same energy range, a spectral feature at 0.44 MeV, interpreted as a redshifted positron annihilation line, was observed during the same balloon flight in the phase interval including the second main peak and the neighboring secondary peak. If the phase interval considered is extended to include also the other secondary peak, the significance of the spectral line appears to increase
The VIPERS Multi-Lambda Survey. II. Diving with massive galaxies in 22 square degrees since z = 1.5
We investigate the evolution of the galaxy stellar mass function (SMF) and
stellar mass density from redshift z=0.2 to z=1.5 of a <22-selected
sample with highly reliable photometric redshifts and over an unprecedentedly
large area. Our study is based on NIR observations carried out with WIRCam at
CFHT over the footprint of the VIPERS spectroscopic survey and benefits from
the high quality optical photometry from the CFHTLS and UV observations with
the GALEX satellite. The accuracy of our photometric redshifts is <
0.03 and 0.05 for the bright (22.5) samples,
respectively. The SMF is measured with ~760,000 galaxies down to =22 and
over an effective area of ~22.4 deg, the latter of which drastically
reduces the statistical uncertainties (i.e. Poissonian error & cosmic
variance). We point out the importance of a careful control of the photometric
calibration, whose impact becomes quickly dominant when statistical
uncertainties are reduced, which will be a major issue for future generation of
cosmological surveys with, e.g. EUCLID or LSST. By exploring the rest-frame
(NUV-r) vs (r-) color-color diagram separating star-forming and quiescent
galaxies, (1) we find that the density of very massive log() >
11.5 galaxies is largely dominated by quiescent galaxies and increases by a
factor 2 from z~1 to z~0.2, which allows for additional mass assembly via dry
mergers, (2) we confirm a scenario where star formation activity is impeded
above a stellar mass log() = 10.640.01, a value that
is found to be very stable at 0.2 < z < 1.5, (3) we discuss the existence of a
main quenching channel that is followed by massive star-forming galaxies, and
finally (4) we characterise another quenching mechanism required to explain the
clear excess of low-mass quiescent galaxies observed at low redshift.Comment: 22 pages, 20 figures. Accepted for publication in A&A. Version to be
publishe
Survey for Emission-Line Galaxies: Universidad Complutense de Madrid List 3
A new low-dispersion objective-prism search for low-redshift (z<0.045)
emission-line galaxies (ELG) has been carried out by the Universidad
Complutense de Madrid with the Schmidt Telescope at the Calar-Alto Observatory.
This is a continuation of the UCM Survey, which was performed by visual
selection of candidates in photographic plates via the presence of the
Halpha+[NII]6584 blend in emission. In this new list we have applied an
automatic procedure, fully developed by us, for selecting and analyzing the ELG
candidates on the digitized images obtained with the MAMA machine. The analyzed
region of the sky covers 189 square degrees in nine fields near R.A.=14h & 17h,
Dec=25 deg. The final sample contains 113 candidates. Special effort has been
made to obtain a large amount of information directly from our uncalibrated
plates by using several external calibrations. The parameters obtained for the
ELG candidates allow for the study of the statistical properties for the
sample.Comment: 13 pages, 18 PostScript figures, 6 JPEG figures, Table 2 corrected.
Accepted for publication in Astrophysical Journal Supplements, also available
at http://www.ucm.es/info/Astrof/opera/LIST3_ApJS99
Density and spin response functions in ultracold fermionic atom gases
We propose a new method of detecting the onset of superfluidity in a
two-component ultracold fermionic gas of atoms governed by an attractive
short-range interaction. By studying the two-body correlation functions we find
that a measurement of the momentum distribution of the density and spin
response functions allows one to access separately the normal and anomalous
densities. The change in sign at low momentum transfer of the density response
function signals the transition between a BEC and a BCS regimes, characterized
by small and large pairs, respectively. This change in sign of the density
response function represents an unambiguous signature of the BEC to BCS
crossover. Also, we predict spin rotational symmetry-breaking in this system
Acoustic attenuation rate in the Fermi-Bose model with a finite-range fermion-fermion interaction
We study the acoustic attenuation rate in the Fermi-Bose model describing a
mixtures of bosonic and fermionic atom gases. We demonstrate the dramatic
change of the acoustic attenuation rate as the fermionic component is evolved
through the BEC-BCS crossover, in the context of a mean-field model applied to
a finite-range fermion-fermion interaction at zero temperature, such as
discussed previously by M.M. Parish et al. [Phys. Rev. B 71, 064513 (2005)] and
B. Mihaila et al. [Phys. Rev. Lett. 95, 090402 (2005)]. The shape of the
acoustic attenuation rate as a function of the boson energy represents a
signature for superfluidity in the fermionic component
- …
