13,023 research outputs found
Rockonomics: The Economics of Popular Music
This paper considers economic issues and trends in the rock and roll industry, broadly defined. The analysis focuses on concert revenues, the main source of performers ' income. Issues considered include: price measurement; concert price acceleration in the 1990s; the increased concentration of revenue among performers; reasons for the secondary ticket market; methods for ranking performers; copyright protection; and technological change.
Vibrational quenching of the electronic ground state in ThO in cold collisions with He
We measure the ratio of the momentum-transfer to the vibrational
quenching cross section for the X (), , state
of molecular thorium monoxide (ThO) in collisions with atomic He between
800 mK and 2.4 K. We observe indirect evidence for ThO--He van der Waals'
complex formation, which has been predicted by theory. We determine the 3-body
recombination rate constant at 2.4 K, and establish that the binding
energy E 4 K
Linear laser diode arrays for improvement in optical disk recording for space stations
The design and fabrication of individually addressable laser diode arrays for high performance magneto-optic recording systems are presented. Ten diode arrays with 30 mW cW light output, linear light vs. current characteristics and single longitudinal mode spectrum were fabricated using channel substrate planar (CSP) structures. Preliminary results on the inverse CSP structure, whose fabrication is less critically dependent on device parameters than the CSP, are also presented. The impact of systems parameters and requirements, in particular, the effect of feedback on laser design is assessed, and techniques to reduce feedback or minimize its effect on systems performance, including mode-stabilized structures, are evaluated
The extraordinary mid-infrared spectral properties of FeLoBAL Quasars
We present mid-infrared spectra of six FeLoBAL QSOs at 1<z<1.8, taken with
the Spitzer space telescope. The spectra span a range of shapes, from hot dust
dominated AGN with silicate emission at 9.7 microns, to moderately obscured
starbursts with strong Polycyclic Aromatic Hydrocarbon (PAH) emission. The
spectrum of one object, SDSS 1214-0001, shows the most prominent PAHs yet seen
in any QSO at any redshift, implying that the starburst dominates the mid-IR
emission with an associated star formation rate of order 2700 solar masses per
year. With the caveats that our sample is small and not robustly selected, we
combine our mid-IR spectral diagnostics with previous observations to propose
that FeLoBAL QSOs are at least largely comprised of systems in which (a) a
merger driven starburst is ending, (b) a luminous AGN is in the last stages of
burning through its surrounding dust, and (c) which we may be viewing over a
restricted line of sight range.Comment: ApJ, accepte
Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications
A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required
Partial reflections of radio waves from the lower ionosphere
The addition of phase difference measurements to partial reflection experiments is discussed, and some advantages of measuring electron density this way are pointed out. The additional information obtained reduces the requirement for an accurate predetermination of collision frequency. Calculations are also made to estimate the errors expected in partial-reflection experiments due to the assumption of Fresnel reflection and to the neglect of coupling between modes. In both cases, the errors are found to be of the same order as known errors in the measurements due to current instrumental limitations
Large spin relaxation rates in trapped submerged-shell atoms
Spin relaxation due to atom-atom collisions is measured for magnetically
trapped erbium and thulium atoms at a temperature near 500 mK. The rate
constants for Er-Er and Tm-Tm collisions are 3.0 times 10^-10 cm^3 s^-1 and 1.1
times 10^-10 cm^3 s^-1, respectively, 2-3 orders of magnitude larger than those
observed for highly magnetic S-state atoms. This is strong evidence for an
additional, dominant, spin relaxation mechanism, electrostatic anisotropy, in
collisions between these "submerged-shell" L > 0 atoms. These large spin
relaxation rates imply that evaporative cooling of these atoms in a magnetic
trap will be highly inefficient.Comment: 10 pages, 3 figure
High-power AlGaAs channeled substrate planar diode lasers for spaceborne communications
A high power channeled substrate planar AlGaAs diode laser with an emission wavelength of 8600 to 8800 A was developed. The optoelectronic behavior (power current, single spatial and spectral behavior, far field characteristics, modulation, and astigmatism properties) and results of computer modeling studies on the performance of the laser are discussed. Lifetest data on these devices at high output power levels is also included. In addition, a new type of channeled substrate planar laser utilizing a Bragg grating to stabilize the longitudinal mode was demonstrated. The fabrication procedures and optoelectronic properties of this new diode laser are described
Properties of the ground F state and the excited P state of atomic thorium in cold collisions with He
We measure inelastic collisional cross sections for the ground F
state and the excited P state of atomic thorium in cold collisions with
He. We determine for Th (F) at 800 mK the ratio of the momentum-transfer to Zeeman relaxation cross sections for
collisions with He. For Th (P), we study electronic inelastic
processes and find no quenching even after collisions. We also determine
the radiative lifetime of Th (P) to be ms. This great
stability of the metastable state opens up the possibility for further study,
including trapping
- …
