417 research outputs found
Ovine pedomics : the first study of the ovine foot 16S rRNA-based microbiome
We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H), interdigital dermatitis (ID) or virulent footrot (VFR). The ovine interdigital skin bacterial community varied significantly by flock and clinical condition. The diversity and richness of operational taxonomic units was greater in tissue from sheep with ID than H or VFR affected sheep. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the most abundant phyla comprising 25 genera. Peptostreptococcus, Corynebacterium and Staphylococcus were associated with H, ID and VFR respectively. Sequences of Dichelobacter nodosus, the causal agent of ovine footrot, were not amplified due to mismatches in the 16S rRNA universal forward primer (27F). A specific real time PCR assay was used to demonstrate the presence of D. nodosus which was detected in all samples including the flock with no signs of ID or VFR. Sheep with ID had significantly higher numbers of D. nodosus (104-109 cells/g tissue) than those with H or VFR feet
Methanogenic Archaea and oral infections — ways to unravel the black box
Archaea, organisms that make up the third domain of cellular life are members of the human oral microflora. They are strikingly less diverse than oral bacteria and appear to be relatively rare with respect to their numerical abundance. Since they have been exclusively found in association with oral infections such as periodontitis and apical periodontitis and given their unique physiology and energy metabolism, it is highly plausible that they are more than just secondary colonizers of infected areas, but instead are actively involved in the overall poly-microbial infection process. Conversely, it is a highly challenging task to clearly demonstrate their possible active participation – mostly due to the difficulty to grow them in routine microbiology laboratories. This current review points out the importance for understanding the medical impact of methanogens and aims at devising strategies for elucidating the true function of archaea in the oral ecosystem
Using Big Data to Optimally Develop Water Quality Temperature
2010 S.C. Water Resources Conference - Science and Policy Challenges for a Sustainable Futur
Recommended from our members
BiomarCaRE: rationale and design of the European BiomarCaRE project including 300,000 participants from 13 European countries
Biomarkers are considered as tools to enhance cardiovascular risk estimation. However, the value of biomarkers on risk estimation beyond European risk scores, their comparative impact among different European regions and their role towards personalised medicine remains uncertain. Biomarker for Cardiovascular Risk Assessment in Europe (BiomarCaRE) is an European collaborative research project with the primary objective to assess the value of established and emerging biomarkers for cardiovascular risk prediction. BiomarCaRE integrates clinical and epidemiological biomarker research and commercial enterprises throughout Europe to combine innovation in biomarker discovery for cardiovascular disease prediction with consecutive validation of biomarker effectiveness in large, well-defined primary and secondary prevention cohorts including over 300,000 participants from 13 European countries. Results from this study will contribute to improved cardiovascular risk prediction across different European populations. The present publication describes the rationale and design of the BiomarCaRE project. Electronic supplementary material The online version of this article (doi:10.1007/s10654-014-9952-x) contains supplementary material, which is available to authorized users
Estimation of Tidal Marsh Loading Effects in a Complex Estuary
2010 S.C. Water Resources Conference - Science and Policy Challenges for a Sustainable Futur
Development of Decision Support Systems for Estimating Salinity Instrusion Effects due to Climate Change on the South Carolina and Georgia Coast
2010 S.C. Water Resources Conference - Science and Policy Challenges for a Sustainable Futur
Preformulation and stability in biological fluids of the retrocyclin RC-101, a potential anti-HIV topical microbicide
<p>Abstract</p> <p>Background</p> <p>RC-101, a cationic peptide retrocyclin analog, has <it>in vitro </it>activity against HIV-1. Peptide drugs are commonly prone to conformational changes, oxidation and hydrolysis when exposed to excipients in a formulation or biological fluids in the body, this can affect product efficacy. We aimed to investigate RC-101 stability under several conditions including the presence of human vaginal fluids (HVF), enabling the efficient design of a safe and effective microbicide product. Stability studies (temperature, pH, and oxidation) were performed by HPLC, Circular Dichroism, and Mass Spectrometry (LC-MS/MS). Additionally, the effect of HVF on formulated RC-101 was evaluated with fluids collected from healthy volunteers, or from subjects with bacterial vaginosis (BV). RC-101 was monitored by LC-MS/MS for up to 72 h.</p> <p>Results</p> <p>RC-101 was stable at pH 3, 4, and 7, at 25 and 37°C. High concentrations of hydrogen peroxide resulted in less than 10% RC-101 reduction over 24 h. RC-101 was detected 48 h after incubation with normal HVF; however, not following incubation with HVF from BV subjects.</p> <p>Conclusions</p> <p>Our results emphasize the importance of preformulation evaluations and highlight the impact of HVF on microbicide product stability and efficacy. RC-101 was stable in normal HVF for at least 48 h, indicating that it is a promising candidate for microbicide product development. However, RC-101 stability appears compromised in individuals with BV, requiring more advanced formulation strategies for stabilization in this environment.</p
An insight into the sialome of the oriental rat flea, Xenopsylla cheopis (Rots)
<p>Abstract</p> <p>Background</p> <p>The salivary glands of hematophagous animals contain a complex cocktail that interferes with the host hemostasis and inflammation pathways, thus increasing feeding success. Fleas represent a relatively recent group of insects that evolved hematophagy independently of other insect orders.</p> <p>Results</p> <p>Analysis of the salivary transcriptome of the flea <it>Xenopsylla cheopis</it>, the vector of human plague, indicates that gene duplication events have led to a large expansion of a family of acidic phosphatases that are probably inactive, and to the expansion of the FS family of peptides that are unique to fleas. Several other unique polypeptides were also uncovered. Additionally, an apyrase-coding transcript of the CD39 family appears as the candidate for the salivary nucleotide hydrolysing activity in <it>X.cheopis</it>, the first time this family of proteins is found in any arthropod salivary transcriptome.</p> <p>Conclusion</p> <p>Analysis of the salivary transcriptome of the flea <it>X. cheopis </it>revealed the unique pathways taken in the evolution of the salivary cocktail of fleas. Gene duplication events appear as an important driving force in the creation of salivary cocktails of blood feeding arthropods, as was observed with ticks and mosquitoes. Only five other flea salivary sequences exist at this time at NCBI, all from the cat flea <it>C. felis</it>. This work accordingly represents the only relatively extensive sialome description of any flea species. Sialotranscriptomes of additional flea genera will reveal the extent that these novel polypeptide families are common throughout the Siphonaptera.</p
- …
