236 research outputs found

    Solitons in Five Dimensional Minimal Supergravity: Local Charge, Exotic Ergoregions, and Violations of the BPS Bound

    Full text link
    We describe a number of striking features of a class of smooth solitons in gauged and ungauged minimal supergravity in five dimensions. The solitons are globally asymptotically flat or asymptotically AdS without any Kaluza-Klein directions but contain a minimal sphere formed when a cycle pinches off in the interior of the spacetime. The solutions carry a local magnetic charge and many have rather unusual ergosurfaces. Perhaps most strikingly, many of the solitons have more electric charge or, in the asymptotically AdS case, more electric charge and angular momentum than is allowed by the usual BPS bound. We comment on, but do not resolve, the new puzzle this raises for AdS/CFT.Comment: 60 pages, 12 figures, 3 table

    Scalability of quantum computation with addressable optical lattices

    Get PDF
    We make a detailed analysis of error mechanisms, gate fidelity, and scalability of proposals for quantum computation with neutral atoms in addressable (large lattice constant) optical lattices. We have identified possible limits to the size of quantum computations, arising in 3D optical lattices from current limitations on the ability to perform single qubit gates in parallel and in 2D lattices from constraints on laser power. Our results suggest that 3D arrays as large as 100 x 100 x 100 sites (i.e., 106\sim 10^6 qubits) may be achievable, provided two-qubit gates can be performed with sufficiently high precision and degree of parallelizability. Parallelizability of long range interaction-based two-qubit gates is qualitatively compared to that of collisional gates. Different methods of performing single qubit gates are compared, and a lower bound of 1×1051 \times 10^{-5} is determined on the error rate for the error mechanisms affecting 133^{133}Cs in a blue-detuned lattice with Raman transition-based single qubit gates, given reasonable limits on experimental parameters.Comment: 17 pages, 5 figures. Accepted for publication in Physical Review

    Charged-rotating black holes and black strings in higher dimensional Einstein-Maxwell theory with a positive cosmological constant

    Get PDF
    We present arguments for the existence of charged, rotating black holes in d=2N+1d=2N+1 dimensions, with d5d\geq 5 with a positive cosmological constant. These solutions posses both, a regular horizon and a cosmological horizon of spherical topology and have NN equal-magnitude angular momenta. They approach asymptotically the de Sitter spacetime background. The counterpart equations for d=2N+2d=2N+2 are investigated, by assuming that the fields are independant of the extra dimension yy, leading to black strings solutions. These solutions are regular at the event horizon. The asymptotic form of the metric is not the de Sitter form and exhibit a naked singularity at finite proper distance.Comment: 21 pages, 9 figure

    Sequences of dipole black rings and Kaluza-Klein bubbles

    Full text link
    We construct new exact solutions to 5D Einstein-Maxwell equations describing sequences of Kaluza-Klein bubbles and dipole black rings. The solutions are generated by 2-soliton transformations from vacuum black ring - bubble sequences. The properties of the solutions are investigated. We also derive the Smarr-like relations and the mass and tension first laws in the general case for such configurations of Kaluza-Klein bubbles and dipole black rings. The novel moment is the appearance of the magnetic flux in the Smarr-like relations and the first laws.Comment: 26 pages, 1 figur

    Holographic Renormalization for z=2 Lifshitz Space-Times from AdS

    Full text link
    Lifshitz space-times with critical exponent z=2 can be obtained by dimensional reduction of Schroedinger space-times with critical exponent z=0. The latter space-times are asymptotically AdS solutions of AdS gravity coupled to an axion-dilaton system and can be uplifted to solutions of type IIB supergravity. This basic observation is used to perform holographic renormalization for 4-dimensional asymptotically z=2 locally Lifshitz space-times by Scherk-Schwarz dimensional reduction of the corresponding problem of holographic renormalization for 5-dimensional asymptotically locally AdS space-times coupled to an axion-dilaton system. We can thus define and characterize a 4-dimensional asymptotically locally z=2 Lifshitz space-time in terms of 5-dimensional AdS boundary data. In this setup the 4-dimensional structure of the Fefferman-Graham expansion and the structure of the counterterm action, including the scale anomaly, will be discussed. We find that for asymptotically locally z=2 Lifshitz space-times obtained in this way there are two anomalies each with their own associated nonzero central charge. Both anomalies follow from the Scherk--Schwarz dimensional reduction of the 5-dimensional conformal anomaly of AdS gravity coupled to an axion-dilaton system. Together they make up an action that is of the Horava-Lifshitz type with nonzero potential term for z=2 conformal gravity.Comment: 32 pages, v2: modified discussion of the central charge

    New stable phase of non uniform black strings in AdSd{AdS}_d

    Full text link
    We consider the non uniform AdSAdS black string equations in arbitrary number of dimension in a perturbative approach up to order 2 and in a non perturbative. We restrict the study in the perturbative approach to the backreacting modes, since they provide the first relevant corrections on the thermodynamical quantities of the solutions. We also present some preliminary results in the construction of non-perturbative solutions, in particular, we present a first part of the non uniform - uniform black string phase diagram. Our results suggests the existence of a new stable phase for AdSAdS non uniform black strings, namely long non uniform black string, with the extra direction length of the order of the AdSAdS curvature.Comment: Results extended. 14 pages, 5 figure

    Black strings with negative cosmological constant: inclusion of electric charge and rotation

    Get PDF
    We generalize the vacuum static black strings with negative cosmological constant recently discussed in literature, by including an electromagnetic field. These higher-dimensional configurations have no dependence on the `compact' extra dimension, and their boundary topology is the product of time and Sd3×S1S^{d-3}\times S^1 or Hd3×S1H^{d-3}\times S^1. Rotating generalizations of the even dimensional black string configurations are considered as well. Different from the static, neutral case, no regular limit is found for a vanishing event horizon radius. We explore numerically the general properties of such solutions and, using a counterterm prescription, we compute their conserved charges and discuss their thermodynamics. We find that the thermodynamics of the black strings follows the pattern of the corresponding black hole solutions in AdS backgrounds.Comment: 35 pages, 8 figures, final versio

    Acceleration-Induced Deconfinement Transitions in de Sitter Spacetime

    Full text link
    In this note, we consider confining gauge theories in D=2,3,4D=2,3,4 defined by S2S^2 or T2T^2 compactification of higher-dimensional conformal field theories with gravity duals. We investigate the behavior of these theories on de Sitter spacetime as a function of the Hubble parameter. We find that in each case, the de Sitter vacuum state of the field theory (defined by Euclidian continuation from a sphere) undergoes a deconfinement transition as the Hubble parameter is increased past a critical value. In each case, the corresponding critical de Sitter temperature is smaller than the corresponding Minkowski-space deconfinement temperature by a factor nearly equal to the dimension of the de Sitter spacetime. The behavior is qualitatively and quantitatively similar to that for confining theories defined by S1S^1 compactification of CFTs, studied recently in arXiv:1007.3996.Comment: 25 pages, 7 figure

    Ricci flow and black holes

    Get PDF
    Gradient flow in a potential energy (or Euclidean action) landscape provides a natural set of paths connecting different saddle points. We apply this method to General Relativity, where gradient flow is Ricci flow, and focus on the example of 4-dimensional Euclidean gravity with boundary S^1 x S^2, representing the canonical ensemble for gravity in a box. At high temperature the action has three saddle points: hot flat space and a large and small black hole. Adding a time direction, these also give static 5-dimensional Kaluza-Klein solutions, whose potential energy equals the 4-dimensional action. The small black hole has a Gross-Perry-Yaffe-type negative mode, and is therefore unstable under Ricci flow. We numerically simulate the two flows seeded by this mode, finding that they lead to the large black hole and to hot flat space respectively, in the latter case via a topology-changing singularity. In the context of string theory these flows are world-sheet renormalization group trajectories. We also use them to construct a novel free energy diagram for the canonical ensemble.Comment: 31 pages, 14 color figures. v2: Discussion of the metric on the space of metrics corrected and expanded, references adde

    Shaping black holes with free fields

    Get PDF
    Starting from a metric Ansatz permitting a weak version of Birkhoff's theorem we find static black hole solutions including matter in the form of free scalar and p-form fields, with and without a cosmological constant \Lambda. Single p-form matter fields permit multiple possibilities, including dyonic solutions, self-dual instantons and metrics with Einstein-Kaelher horizons. The inclusion of multiple p-forms on the other hand, arranged in a homogeneous fashion with respect to the horizon geometry, permits the construction of higher dimensional dyonic p-form black holes and four dimensional axionic black holes with flat horizons, when \Lambda<0. It is found that axionic fields regularize black hole solutions in the sense, for example, of permitting regular -- rather than singular -- small mass Reissner-Nordstrom type black holes. Their cosmic string and Vaidya versions are also obtained.Comment: 38 pages. v2: minor changes, published versio
    corecore