2,160 research outputs found
New measurements of total ionizing dose in the lunar environment
[1] We report new measurements of solar minimum ionizing radiation dose at the Moon onboard the Lunar Reconnaissance Orbiter (LRO) from June 2009 through May 2010. The Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on LRO houses a compact and highly precise microdosimeter whose design allows measurements of dose rates below 1 micro-Rad per second in silicon achieved with minimal resources (20 g, ∼250 milliwatts, and ∼3 bits/second). We envision the use of such a small yet accurate dosimeter in many future spaceflight applications where volume, mass, and power are highly constrained. As this was the first operation of the microdosimeter in a space environment, the goal of this study is to verify its response by using simultaneous measurements of the galactic cosmic ray ionizing environment at LRO, at L1, and with other concurrent dosimeter measurements and model predictions. The microdosimeter measured the same short timescale modulations in the galactic cosmic rays as the other independent measurements, thus verifying its response to a known source of minimum-ionizing particles. The total dose for the LRO mission over the first 333 days was only 12.2 Rads behind ∼130 mils of aluminum because of the delayed rise of solar activity in solar cycle 24 and the corresponding lack of intense solar energetic particle events. The dose rate in a 50 km lunar orbit was about 30 percent lower than the interplanetary rate, as one would expect from lunar obstruction of the visible sky
Macrophage TNF-α mediates parathion-induced airway hyperreactivity in guinea pigs.
Organophosphorus pesticides (OPs) are implicated in human asthma. We previously demonstrated that, at concentrations that do not inhibit acetylcholinesterase activity, the OP parathion causes airway hyperreactivity in guinea pigs as a result of functional loss of inhibitory M2 muscarinic receptors on parasympathetic nerves. Because macrophages are associated with asthma, we investigated whether macrophages mediate parathion-induced M2 receptor dysfunction and airway hyperreactivity. Airway physiology was measured in guinea pigs 24 h after a subcutaneous injection of parathion. Pretreatment with liposome-encapsulated clodronate induced alveolar macrophage apoptosis and prevented parathion-induced airway hyperreactivity in response to electrical stimulation of the vagus nerves. As determined by qPCR, TNF-α and IL-1β mRNA levels were increased in alveolar macrophages isolated from parathion-treated guinea pigs. Parathion treatment of alveolar macrophages ex vivo did not significantly increase IL-1β and TNF-α mRNA but did significantly increase TNF-α protein release. Consistent with these data, pretreatment with the TNF-α inhibitor etanercept but not the IL-1β receptor inhibitor anakinra prevented parathion-induced airway hyperreactivity and protected M2 receptor function. These data suggest a novel mechanism of OP-induced airway hyperreactivity in which low-level parathion activates macrophages to release TNF-α-causing M2 receptor dysfunction and airway hyperreactivity. These observations have important implications regarding therapeutic approaches for treating respiratory disease associated with OP exposures
Wie verlässlich ist die Bestimmung von Procalcitonin als Entzündungsmarker auf Intensivstation?
The role of procalcitonin (PCT) plasma levels as a diagnostic tool for intensive care patients has been intensively investigated during the past years. In particular for recognition of bacterial infections, PCT levels have been shown to be superior to other clinical and biochemical markers. Furthermore, some very recent studies show that in patients with lower respiratory tract infections PCT guided antibiotic therapy reduces antibiotic use and thereby may also reduce duration of stay of patients in hospital and thus cut hospitalisation costs. However, various studies indicate that the value of PCT as a prognostic marker is limited because of false positive or negative values. Despite these limitations PCT plasma levels are currently measured in intensive care units. The present study summarises the possible clinical uses of this lab marker as a diagnostic tool for the assessment of critically of ill patients
The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented
Changes in adenosine 5'-monophosphate-activated protein kinase as a mechanism of visceral obesity in Cushing's syndrome
OBJECTIVE: Features of the metabolic syndrome such as central obesity with insulin resistance and dyslipidemia are typical signs of Cushing's syndrome and common side effects of prolonged glucocorticoid treatment. AMP-activated protein kinase (AMPK), a key regulatory enzyme of lipid and carbohydrate metabolism as well as appetite, is involved in the development of the deleterious metabolic effects of excess glucocorticoids, but no data are available in humans. In the current study, we demonstrate the effect of high glucocorticoid levels on AMPK activity of human adipose tissue samples from patients with Cushing's syndrome. METHODS: AMPK activity and mRNA expression of genes involved in lipid metabolism were assessed in visceral adipose tissue removed at abdominal surgery of 11 patients with Cushing's syndrome, nine sex-, age-, and weight-matched patients with adrenal incidentalomas, and in visceral adipose tissue from four patients with non-endocrine-related abdominal surgery. RESULTS: The patients with Cushing's syndrome exhibited a 70% lower AMPK activity in visceral adipose tissue as compared with both incidentalomas and control patients (P = 0.007 and P > 0.001, respectively). Downstream targets of AMPK fatty acid synthase and phosphoenol-pyruvate carboxykinase were up-regulated in patients with Cushing's syndrome. AMPK activity was inversely correlated with 0900 h serum cortisol and with urinary free cortisol. CONCLUSIONS: Our data suggest that glucocorticoids inhibit AMPK activity in adipose tissue, suggesting a novel mechanism to explain the deposition of visceral adipose tissue and the consequent central obesity observed in patients with iatrogenic or endogenous Cushing's syndrome
Orbital and physical parameters of eclipsing binaries from the ASAS catalogue -- III. Two new low-mass systems with rapidly evolving spots
We present the results of our spectroscopic and photometric analysis of two
newly discovered low-mass detached eclipsing binaries found in the All-Sky
Automated Survey (ASAS) catalogue: ASAS J093814-0104.4 and ASAS J212954-5620.1.
Using the GIRAFFE instrument on the 1.9-m Radcliffe telescope at SAAO and the
UCLES spectrograph on the 3.9-m Anglo-Australian Telescope, we obtained
high-resolution spectra of both objects and derived their radial velocities
(RVs) at various orbital phases. The RVs of both objects were measured with the
TODCOR technique using synthetic template spectra as references. We also
obtained V and I band photometry using the 1.0-m Elizabeth telescope at SAAO
and the 0.4-m PROMPT instruments located at the CTIO. The orbital and physical
parameters of the systems were derived with PHOEBE and JKTEBOP codes. We
compared our results with several sets of widely-used isochrones. Our
multi-epoch photometric observations demonstrate that both objects show
significant out-of-eclipse modulations, which vary in time. We believe that
this effect is caused by stellar spots, which evolve on time scales of tens of
days. For this reason, we constructed our models on the basis of photometric
observations spanning short time scales (less than a month). Our modeling
indicates that (1) ASAS-09 is a main sequence active system with nearly-twin
components with masses of M1 = 0.771(33) Msun, M2 = 0.768(21) Msun and radii of
R1 = 0.772(12) Rsun and R2 = 0.769(13) Rsun. (2) ASAS-21 is a main sequence
active binary with component masses of M1 = 0.833(17) Msun, M2 = 0.703(13) Msun
and radii of R1 = 0.845(12) Rsun and R2 = 0.718(17) Rsun. Both systems confirm
the characteristic of active low-mass stars, for which the observed radii are
larger and the temperatures lower than predicted by evolutionary models. Other
parameters agree within errors with the models of main sequence stars.Comment: 15 pages, 7 figures, 7 tables, to appear in A&
Prognostic value of procalcitonin in Legionella pneumonia
The diagnostic reliability and prognostic implications of procalcitonin (PCT) (ng/ml) on admission in patients with community-acquired pneumonia (CAP) due to Legionella pneumophila are unknown. We retrospectively analysed PCT values in 29 patients with microbiologically proven Legionella-CAP admitted to the University Hospital Basel, Switzerland, between 2002 and 2007 and compared them to other markers of infection, namely, C-reactive protein (CRP) (mg/l) and leukocyte count (109/l), and two prognostic severity assessment scores (PSI and CURB65). Laboratory analysis demonstrated that PCT values on admission were >0.1in over 93%, >0.25 in over 86%, and >0.5 in over 82% of patients with Legionella-CAP. Patients with adverse medical outcomes (59%, n = 17) including need for ICU admission (55%, n = 16) and/or inhospital mortality (14%, n = 4) had significantly higher median PCT values on admission (4.27 [IQR 2.46-9.48] vs 0.97 [IQR 0.29-2.44], p = 0.01), while the PSI (124 [IQR 81-147] vs 94 [IQR 75-116], p = 0.19), the CURB65 (2 [IQR 1-2] vs 1 [1-3], p = 0.47), CRP values (282 [IQR 218-343], p = 0.28 vs 201 [IQR 147-279], p = 0.28), and leukocyte counts (12 [IQR 10-21] vs 12 [IQR 9-15], p = 0.58) were similar. In receiver operating curves, PCT concentrations on admission had a higher prognostic accuracy to predict adverse outcomes (AUC 0.78 [95%CI 0.61-96]) as compared to the PSI (0.64 [95%CI 0.43-0.86], p = 0.23), the CURB65 (0.58 [95%CI 0.36-0.79], p = 0.21), CRP (0.61 [95%CI 0.39-0.84], p = 0.19), and leukocyte count (0.57 [95%CI 0.35-0.78], p = 0.12). Kaplan-Meier curves demonstrated that patients with initial PCT values above the optimal cut-off of 1.5 had a significantly higher risk of death and/or ICU admission (log rank p = 0.003) during the hospital stay. In patients with CAP due to Legionella, PCT levels on admission might be an interesting predictor for adverse medical outcome
- …
