6,597 research outputs found
Performance Comparison of Control Schemes for Variable-Speed Wind Turbines
We analyze the performance of different control schemes when applied to the regulation problem of a variable-speed representative wind turbine. In particular, we formulate and compare a wind-scheduled PID, a LQR controller and a novel adaptive non-linear model predictive controller, equipped with observers of the tower states and wind. The simulations include gusts and turbulent winds of varying intensity in nominal as well as off-design operating conditions. The experiments highlight the possible advantages of model-based non-linear control strategies
How Many Templates for GW Chirp Detection? The Minimal-Match Issue Revisited
In a recent paper dealing with maximum likelihood detection of gravitational
wave chirps from coalescing binaries with unknown parameters we introduced an
accurate representation of the no-signal cumulative distribution of the
supremum of the whole correlator bank. This result can be used to derive a
refined estimate of the number of templates yielding the best tradeoff between
detector's performance (in terms of lost signals among those potentially
detectable) and computational burden.Comment: submitted to Class. Quantum Grav. Typing error in eq. (4.8) fixed;
figure replaced in version
Final results from the EU project AVATAR: aerodynamic modelling of 10 MW wind turbines
This paper presents final results from the EU project AVATAR in which aerodynamic models are improved and validated for wind turbines on a scale of 10 MW and more. Special attention is paid to the improvement of low fidelity engineering (BEM based) models with higher fidelity (CFD) models but also with intermediate fidelity free vortex wake (FVW) models. The latter methods were found to be a good basis for improvement of induction modelling in engineering methods amongst others for the prediction of yawed cases, which in AVATAR was found to be one of the most challenging subjects to model. FVW methods also helped to improve the prediction of tip losses. Aero-elastic calculations with BEM based and FVW based models showed that fatigue loads for normal production cases were over predicted with approximately 15% or even more. It should then be realised that the outcome of BEM based models does not only depend on the choice of engineering add-ons (as is often assumed) but it is also heavily dependent on the way the induced velocities are solved. To this end an annulus and element approach are discussed which are assessed with the aid of FVW methods. For the prediction of fatigue loads the so-called element approach is recommended but the derived yaw models rely on an annulus approach which pleads for a generalised solution method for the induced velocities
Gravitational Wave Chirp Search: Economization of PN Matched Filter Bank via Cardinal Interpolation
The final inspiral phase in the evolution of a compact binary consisting of
black holes and/or neutron stars is among the most probable events that a
network of ground-based interferometric gravitational wave detectors is likely
to observe. Gravitational radiation emitted during this phase will have to be
dug out of noise by matched-filtering (correlating) the detector output with a
bank of several templates, making the computational resources required
quite demanding, though not formidable. We propose an interpolation method for
evaluating the correlation between template waveforms and the detector output
and show that the method is effective in substantially reducing the number of
templates required. Indeed, the number of templates needed could be a factor
smaller than required by the usual approach, when the minimal overlap
between the template bank and an arbitrary signal (the so-called {\it minimal
match}) is 0.97. The method is amenable to easy implementation, and the various
detector projects might benefit by adopting it to reduce the computational
costs of inspiraling neutron star and black hole binary search.Comment: scheduled for publicatin on Phys. Rev. D 6
Plants lacking the main light-harvesting complex retain photosystem II macro-organization
Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure—the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes—which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function
Educating through Exemplars: Alternative Paths to Virtue
This paper confronts Zagzebski’s exemplarism with the intertwined debates over the conditions of exemplarity and the unity-disunity of the virtues, to show the advantages of a pluralistic exemplar-based approach to moral education (PEBAME). PEBAME is based on a prima facie disunitarist perspective in moral theory, which amounts to admitting both exemplarity in all respects and single-virtue exemplarity. First, we account for the advantages of PEBAME, and we show how two figures in
recent Italian history (Giorgio Perlasca and Gino Bartali) satisfy Blum’s definitions of ‘moral hero’ and ‘moral saint’ (1988). Then, we offer a comparative analysis of the effectiveness of heroes and saints with respect to character education, according to four criteria derived from PEBAME: admirability, virtuousness, transparency, and imitability. Finally, we conclude that both unitarist and disunitarist exemplars are fundamental to character education; this is because of the hero's superiority to the saint with respect to imitability, a fundamental feature of the exemplar for character
education
A Critical Evaluation of Structural Analysis Tools used for the Design of Large Composite Wind Turbine Rotor Blades under Ultimate and Cycle Loading
Rotor blades for 10-20MW wind turbines may exceed 120m. To meet the demanding requirements of the blade design, structural analysis tools have been developed individually and combined with commercial available ones by blade designers. Due to the various available codes, understanding and estimating the uncertainty introduced in the design calculations by using these tools is needed to allow assessment of the effectiveness of any future design modification. For quantifying the introduced uncertainty a reference base was established within INNWIND.EU in which the several structural analysis concepts are evaluated. This paper shows the major findings of the comparative work performed by six organizations (universities and research institutes) participating in the benchmark exercise. The case concerns a 90m Glass/Epoxy blade of a horizontal axis 10MW wind turbine. The detailed blade geometry, the material properties of the constitutive layers and the aero-elastic loads formed the base by which global and local blade stiffness and strength are evaluated and compared. Static, modal, buckling and fatigue analysis of the blade were performed by each partner using their own tools; fully in-house developed or combined with commercially available ones, with its specific structural analysis approach (thin wall theory and finite element models using beam, shell or solid elements) and their preferable analysis type (linear or geometrical non-linear). Along with sectional mass and stiffness properties, the outcome is compared in terms of displacements, stresses, strains and failure indices at the ply level of the blade structure, eigen-frequencies and eigen-modes, critical buckling loads and Palmgren-Miner damage indices due to cycle loading. Results indicate that differences between estimations range from 0.5% to even 40%, depending on the property compared. Modelling details, e.g. load application on the numerical models and assumptions, e.g. type of analysis, lead to these differences. The paper covers these subjects, presenting the modelling uncertainty derived
- …
