694 research outputs found

    Flux-Line Lattice Structures in Untwinned YBa2Cu3O

    Full text link
    A small angle neutron scattering study of the flux-line lattice in a large single crystal of untwinned YBa2Cu3O is presented. In fields parallel to the c-axis, diffraction spots are observed corresponding to four orientations of a hexagonal lattice, distorted by the a-b anisotropy. A value for the anisotropy, the penetration depth ratio, of 1.18(2) was obtained. The high quality of the data is such that second order diffraction is observed, indicating a well ordered FLL. With the field at 33 degrees to c a field dependent re-orientation of the lattice is observed around 3T.Comment: 4 pages, 4 figure

    No Ending Point in The Bragg-to-Vortex Glass Phase Transition Line at Low Temperatures

    Full text link
    We have measured the magnetic hysteresis loops and the magnetic relaxation for Bi2Sr2CaCu2O8+δBi_2Sr_2CaCu_2O_{8+\delta} (Bi-2212) single crystals which exhibit the second magnetization peak effect. Although no second peak effect is observed below 20 K in the measurement with fast field sweeping rate, it is found that the second peak effect will appear again after long time relaxation or in a measurement with very slow field sweeping rate at 16 K. It is anticipated that the peak effect will appear at very low temperatures (approaching zero K) when the relaxation time is long enough. We attribute this phenomenon to the profile of the interior magnetic field and conclude that the phase transition line of Bragg glass to vortex glass has no ending point at low temperatures.Comment: 4 pages, 5 figure

    Thermal fluctuations and disorder effects in vortex lattices

    Full text link
    We calculate using loop expansion the effect of fluctuations on the structure function and magnetization of the vortex lattice and compare it with existing MC results. In addition to renormalization of the height of the Bragg peaks of the structure function, there appears a characteristic saddle shape ''halos'' around the peaks. The effect of disorder on magnetization is also calculated. All the infrared divergencies related to soft shear cancel.Comment: 10 pages, revtex file, one figur

    Low-Field Phase Diagram of Layered Superconductors: The Role of Electromagnetic Coupling

    Full text link
    We determine the position and shape of the melting line in a layered superconductor taking the electromagnetic coupling between layers into account. In the limit of vanishing Josephson coupling we obtain a new generic reentrant low-field melting line. Finite Josephson coupling pushes the melting line to higher temperatures and fields and a new line shape Bm(1T/Tc)3/2B_{{\rm m}} \propto (1-T/T_c)^{3/2} is found. We construct the low-field phase diagram including melting and decoupling lines and discuss various experiments in the light of our new results.Comment: 12 pages, 1 figure attached as compressed and uuencoded postscrip

    Transport and Entanglement Generation in the Bose-Hubbard Model

    Get PDF
    We study entanglement generation via particle transport across a one-dimensional system described by the Bose-Hubbard Hamiltonian. We analyze how the competition between interactions and tunneling affects transport properties and the creation of entanglement in the occupation number basis. Alternatively, we propose to use spatially delocalized quantum bits, where a quantum bit is defined by the presence of a particle either in a site or in the adjacent one. Our results can serve as a guidance for future experiments to characterize entanglement of ultracold gases in one-dimensional optical lattices.Comment: 14 pages, 6 figure

    Dirac Nodes and Quantized Thermal Hall Effect in the Mixed State of d-wave Superconductors

    Full text link
    We consider the vortex state of d-wave superconductors in the clean limit. Within the linearized approximation the quasiparticle bands obtained are found to posess Dirac cone dispersion (band touchings) at special points in the Brillouin zone. They are protected by a symmetry of the linearized Hamiltonian that we call T_Dirac. Moreover, for vortex lattices that posess inversion symmetry, it is shown that there is always a Dirac cone centered at zero energy within the linearized theory. On going beyond the linearized approximation and including the effect of the smaller curvature terms (that break T_Dirac), the Dirac cone dispersions are found to acquire small gaps (0.5 K/Tesla in YBCO) that scale linearly with the applied magnetic field. When the chemical potential for quasiparticles lies within the gap, quantization of the thermal-Hall conductivity is expected at low temperatures i.e. kappa_{xy}/T = n[(pi k_B)^2/(3h)] with the integer `n' taking on values n=+2, -2, 0. This quantization could be seen in low temperature thermal transport measurements of clean d-wave superconductors with good vortex lattices.Comment: (23 pages in all [7 pages in appendices], 9 figures

    Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding

    Full text link
    We determine the optimal rates of universal quantum codes for entanglement transmission and generation under channel uncertainty. In the simplest scenario the sender and receiver are provided merely with the information that the channel they use belongs to a given set of channels, so that they are forced to use quantum codes that are reliable for the whole set of channels. This is precisely the quantum analog of the compound channel coding problem. We determine the entanglement transmission and entanglement-generating capacities of compound quantum channels and show that they are equal. Moreover, we investigate two variants of that basic scenario, namely the cases of informed decoder or informed encoder, and derive corresponding capacity results.Comment: 45 pages, no figures. Section 6.2 rewritten due to an error in equation (72) of the old version. Added table of contents, added section 'Conclusions and further remarks'. Accepted for publication in 'Communications in Mathematical Physics

    Supercooling of the disordered vortex lattice in Bi_2Sr_2CaCu_2O_8+d

    Full text link
    Time-resolved local induction measurements near to the vortex lattice order-disorder transition in optimally doped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} single crystals shows that the high-field, disordered phase can be quenched to fields as low as half the transition field. Over an important range of fields, the electrodynamical behavior of the vortex system is governed by the co-existence of the two phases in the sample. We interpret the results in terms of supercooling of the high-field phase and the possible first order nature of the order-disorder transition at the ``second peak''.Comment: 4 pages, 3 figures. Submitted to Nature, July 10th, 1999; Rejected August 8th for lack of broad interest Submitted to Physical Review Letters September 10th, 199
    corecore