694 research outputs found
Flux-Line Lattice Structures in Untwinned YBa2Cu3O
A small angle neutron scattering study of the flux-line lattice in a large
single crystal of untwinned YBa2Cu3O is presented. In fields parallel to the
c-axis, diffraction spots are observed corresponding to four orientations of a
hexagonal lattice, distorted by the a-b anisotropy. A value for the anisotropy,
the penetration depth ratio, of 1.18(2) was obtained. The high quality of the
data is such that second order diffraction is observed, indicating a well
ordered FLL. With the field at 33 degrees to c a field dependent re-orientation
of the lattice is observed around 3T.Comment: 4 pages, 4 figure
No Ending Point in The Bragg-to-Vortex Glass Phase Transition Line at Low Temperatures
We have measured the magnetic hysteresis loops and the magnetic relaxation
for (Bi-2212) single crystals which exhibit the
second magnetization peak effect. Although no second peak effect is observed
below 20 K in the measurement with fast field sweeping rate, it is found that
the second peak effect will appear again after long time relaxation or in a
measurement with very slow field sweeping rate at 16 K. It is anticipated that
the peak effect will appear at very low temperatures (approaching zero K) when
the relaxation time is long enough. We attribute this phenomenon to the profile
of the interior magnetic field and conclude that the phase transition line of
Bragg glass to vortex glass has no ending point at low temperatures.Comment: 4 pages, 5 figure
Thermal fluctuations and disorder effects in vortex lattices
We calculate using loop expansion the effect of fluctuations on the structure
function and magnetization of the vortex lattice and compare it with existing
MC results. In addition to renormalization of the height of the Bragg peaks of
the structure function, there appears a characteristic saddle shape ''halos''
around the peaks. The effect of disorder on magnetization is also calculated.
All the infrared divergencies related to soft shear cancel.Comment: 10 pages, revtex file, one figur
Low-Field Phase Diagram of Layered Superconductors: The Role of Electromagnetic Coupling
We determine the position and shape of the melting line in a layered
superconductor taking the electromagnetic coupling between layers into account.
In the limit of vanishing Josephson coupling we obtain a new generic reentrant
low-field melting line. Finite Josephson coupling pushes the melting line to
higher temperatures and fields and a new line shape is found. We construct the low-field phase diagram including
melting and decoupling lines and discuss various experiments in the light of
our new results.Comment: 12 pages, 1 figure attached as compressed and uuencoded postscrip
Transport and Entanglement Generation in the Bose-Hubbard Model
We study entanglement generation via particle transport across a
one-dimensional system described by the Bose-Hubbard Hamiltonian. We analyze
how the competition between interactions and tunneling affects transport
properties and the creation of entanglement in the occupation number basis.
Alternatively, we propose to use spatially delocalized quantum bits, where a
quantum bit is defined by the presence of a particle either in a site or in the
adjacent one. Our results can serve as a guidance for future experiments to
characterize entanglement of ultracold gases in one-dimensional optical
lattices.Comment: 14 pages, 6 figure
Dirac Nodes and Quantized Thermal Hall Effect in the Mixed State of d-wave Superconductors
We consider the vortex state of d-wave superconductors in the clean limit.
Within the linearized approximation the quasiparticle bands obtained are found
to posess Dirac cone dispersion (band touchings) at special points in the
Brillouin zone. They are protected by a symmetry of the linearized Hamiltonian
that we call T_Dirac. Moreover, for vortex lattices that posess inversion
symmetry, it is shown that there is always a Dirac cone centered at zero energy
within the linearized theory. On going beyond the linearized approximation and
including the effect of the smaller curvature terms (that break T_Dirac), the
Dirac cone dispersions are found to acquire small gaps (0.5 K/Tesla in YBCO)
that scale linearly with the applied magnetic field. When the chemical
potential for quasiparticles lies within the gap, quantization of the
thermal-Hall conductivity is expected at low temperatures i.e. kappa_{xy}/T =
n[(pi k_B)^2/(3h)] with the integer `n' taking on values n=+2, -2, 0. This
quantization could be seen in low temperature thermal transport measurements of
clean d-wave superconductors with good vortex lattices.Comment: (23 pages in all [7 pages in appendices], 9 figures
Entanglement on mixed stabilizer states: normal forms and reduction procedures
Published versio
Entanglement transmission and generation under channel uncertainty: Universal quantum channel coding
We determine the optimal rates of universal quantum codes for entanglement
transmission and generation under channel uncertainty. In the simplest scenario
the sender and receiver are provided merely with the information that the
channel they use belongs to a given set of channels, so that they are forced to
use quantum codes that are reliable for the whole set of channels. This is
precisely the quantum analog of the compound channel coding problem. We
determine the entanglement transmission and entanglement-generating capacities
of compound quantum channels and show that they are equal. Moreover, we
investigate two variants of that basic scenario, namely the cases of informed
decoder or informed encoder, and derive corresponding capacity results.Comment: 45 pages, no figures. Section 6.2 rewritten due to an error in
equation (72) of the old version. Added table of contents, added section
'Conclusions and further remarks'. Accepted for publication in
'Communications in Mathematical Physics
Supercooling of the disordered vortex lattice in Bi_2Sr_2CaCu_2O_8+d
Time-resolved local induction measurements near to the vortex lattice
order-disorder transition in optimally doped
BiSrCaCuO single crystals shows that the
high-field, disordered phase can be quenched to fields as low as half the
transition field. Over an important range of fields, the electrodynamical
behavior of the vortex system is governed by the co-existence of the two phases
in the sample. We interpret the results in terms of supercooling of the
high-field phase and the possible first order nature of the order-disorder
transition at the ``second peak''.Comment: 4 pages, 3 figures. Submitted to Nature, July 10th, 1999; Rejected
August 8th for lack of broad interest Submitted to Physical Review Letters
September 10th, 199
- …
