13,823 research outputs found
Anderson transition in systems with chiral symmetry
Anderson localization is a universal quantum feature caused by destructive
interference. On the other hand chiral symmetry is a key ingredient in
different problems of theoretical physics: from nonperturbative QCD to highly
doped semiconductors. We investigate the interplay of these two phenomena in
the context of a three-dimensional disordered system. We show that chiral
symmetry induces an Anderson transition (AT) in the region close to the band
center. Typical properties at the AT such as multifractality and critical
statistics are quantitatively affected by this additional symmetry. The origin
of the AT has been traced back to the power-law decay of the eigenstates; this
feature may also be relevant in systems without chiral symmetry.Comment: RevTex4, 4 two-column pages, 3 .eps figures, updated references,
final version as published in Phys. Rev.
The main runs and datasets of the Fine Resolution Antarctic Model Project (FRAM). Part I: the coarse resolution runs
Bright and dark breathers in Fermi-Pasta-Ulam lattices
In this paper we study the existence and linear stability of bright and dark
breathers in one-dimensional FPU lattices. On the one hand, we test the range
of validity of a recent breathers existence proof [G. James, {\em C. R. Acad.
Sci. Paris}, 332, Ser. 1, pp. 581 (2001)] using numerical computations.
Approximate analytical expressions for small amplitude bright and dark
breathers are found to fit very well exact numerical solutions even far from
the top of the phonon band. On the other hand, we study numerically large
amplitude breathers non predicted in the above cited reference. In particular,
for a class of asymmetric FPU potentials we find an energy threshold for the
existence of exact discrete breathers, which is a relatively unexplored
phenomenon in one-dimensional lattices. Bright and dark breathers superposed on
a uniformly stressed static configuration are also investigated.Comment: 11 pages, 16 figure
Breathers in FPU systems, near and far from the phonon band
There exists a recent mathematical proof on the existence of small amplitude
breathers in FPU systems near the phonon band, which includes a prediction of
their amplitude and width. In this work we obtain numerically these breathers,
and calculate the range of validity of the predictions, which extends
relatively far from the phonon band. There exist also large amplitude breathers
with the same frequency, with the consequence that there is an energy gap for
breather creation in these systems.Comment: 3 pages, 2 figures, proceeding of the conference on Localization and
to and Energy Transfer in Nonlinear Systems, June 17-21, 2002, San Lorenzo de
El Escorial, Madrid, Spain. To be published by World Scientifi
Collective Coordinates Theory for Discrete Soliton Ratchets in the sine-Gordon Model
A collective coordinate theory is develop for soliton ratchets in the damped
discrete sine-Gordon model driven by a biharmonic force. An ansatz with two
collective coordinates, namely the center and the width of the soliton, is
assumed as an approximated solution of the discrete non-linear equation. The
evolution of these two collective coordinates, obtained by means of the
Generalized Travelling Wave Method, explains the mechanism underlying the
soliton ratchet and captures qualitatively all the main features of this
phenomenon. The theory accounts for the existence of a non-zero depinning
threshold, the non-sinusoidal behaviour of the average velocity as a function
of the difference phase between the harmonics of the driver, the non-monotonic
dependence of the average velocity on the damping and the existence of
non-transporting regimes beyond the depinning threshold. In particular it
provides a good description of the intriguing and complex pattern of subspaces
corresponding to different dynamical regimes in parameter space
Non-ergodic phases in strongly disordered random regular graphs
We combine numerical diagonalization with a semi-analytical calculations to
prove the existence of the intermediate non-ergodic but delocalized phase in
the Anderson model on disordered hierarchical lattices. We suggest a new
generalized population dynamics that is able to detect the violation of
ergodicity of the delocalized states within the Abou-Chakra, Anderson and
Thouless recursive scheme. This result is supplemented by statistics of random
wave functions extracted from exact diagonalization of the Anderson model on
ensemble of disordered Random Regular Graphs (RRG) of N sites with the
connectivity K=2. By extrapolation of the results of both approaches to
N->infinity we obtain the fractal dimensions D_{1}(W) and D_{2}(W) as well as
the population dynamic exponent D(W) with the accuracy sufficient to claim that
they are non-trivial in the broad interval of disorder strength W_{E}<W<W_{c}.
The thorough analysis of the exact diagonalization results for RRG with
N>10^{5} reveals a singularity in D_{1,2}(W)-dependencies which provides a
clear evidence for the first order transition between the two delocalized
phases on RRG at W_{E}\approx 10.0. We discuss the implications of these
results for quantum and classical non-integrable and many-body systems.Comment: 4 pages paper with 5 figures + Supplementary Material with 5 figure
Breathers in inhomogeneous nonlinear lattices: an analysis via centre manifold reduction
We consider an infinite chain of particles linearly coupled to their nearest
neighbours and subject to an anharmonic local potential. The chain is assumed
weakly inhomogeneous. We look for small amplitude discrete breathers. The
problem is reformulated as a nonautonomous recurrence in a space of
time-periodic functions, where the dynamics is considered along the discrete
spatial coordinate. We show that small amplitude oscillations are determined by
finite-dimensional nonautonomous mappings, whose dimension depends on the
solutions frequency. We consider the case of two-dimensional reduced mappings,
which occurs for frequencies close to the edges of the phonon band. For an
homogeneous chain, the reduced map is autonomous and reversible, and
bifurcations of reversible homoclinics or heteroclinic solutions are found for
appropriate parameter values. These orbits correspond respectively to discrete
breathers, or dark breathers superposed on a spatially extended standing wave.
Breather existence is shown in some cases for any value of the coupling
constant, which generalizes an existence result obtained by MacKay and Aubry at
small coupling. For an inhomogeneous chain the study of the nonautonomous
reduced map is in general far more involved. For the principal part of the
reduced recurrence, using the assumption of weak inhomogeneity, we show that
homoclinics to 0 exist when the image of the unstable manifold under a linear
transformation intersects the stable manifold. This provides a geometrical
understanding of tangent bifurcations of discrete breathers. The case of a mass
impurity is studied in detail, and our geometrical analysis is successfully
compared with direct numerical simulations
Evidence for Two Time Scales in Long SNS Junctions
We use microwave excitation to elucidate the dynamics of long superconductor
/ normal metal / superconductor Josephson junctions. By varying the excitation
frequency in the range 10 MHz - 40 GHz, we observe that the critical and
retrapping currents, deduced from the dc voltage vs. dc current characteristics
of the junction, are set by two different time scales. The critical current
increases when the ac frequency is larger than the inverse diffusion time in
the normal metal, whereas the retrapping current is strongly modified when the
excitation frequency is above the electron-phonon rate in the normal metal.
Therefore the critical and retrapping currents are associated with elastic and
inelastic scattering, respectively
The cluster of galaxies Abell 376
We present a dynamical analysis of the galaxy cluster Abell 376 based on a
set of 73 velocities, most of them measured at Pic du Midi and Haute-Provence
observatories and completed with data from the literature. Data on individual
galaxies are presented and the accuracy of the determined velocities is
discussed as well as some properties of the cluster. We obtained an improved
mean redshift value z=0.0478^{+0.005}_{-0.006} and velocity dispersion
sigma=852^{+120}_{-76}km/s. Our analysis indicates that inside a radius of
900h_{70}^{-1}kpc (15 arcmin) the cluster is well relaxed without any
remarkable feature and the X-ray emission traces fairly well the galaxy
distribution. A possible substructure is seen at 20 arcmin from the centre
towards the Southwest direction, but is not confirmed by the velocity field.
This SW clump is, however, kinematically bound to the main structure of Abell
376. A dense condensation of galaxies is detected at 46 arcmin (projected
distance 2.6h_{70}^{-1}Mpc) from the centre towards the Northwest and analysis
of the apparent luminosity distribution of its galaxies suggests that this
clump is part of the large scale structure of Abell 376. X-ray spectroscopic
analysis of ASCA data resulted in a temperature kT = 4.3+/-0.4 keV and metal
abundance Z = 0.32+/-0.08 Z_solar. The velocity dispersion corresponding to
this temperature using the T_X-sigma scaling relation is in agreement with the
measured galaxies velocities.Comment: 11 pages, 10 figures, accepted for publication in A&
- …
