1,982 research outputs found
Ridge Network in Crumpled Paper
The network formed by ridges in a straightened sheet of crumpled paper is
studied using a laser profilometer. Square sheets of paper were crumpled into
balls, unfolded and their height profile measured. From these profiles the
imposed ridges were extracted as networks. Nodes were defined as intersections
between ridges, and links as the various ridges connecting the nodes. Many
network and spatial properties have been investigated. The tail of the ridge
length distribution was found to follow a power-law whereas the shorter ridges
followed a log-normal distribution. The degree distribution was found to have
an exponentially decaying tail, and the degree correlation was found to be
disassortative. The facets created by the ridges and the Voronoi diagram formed
by the nodes have also been investigated.Comment: 8 pages, 10 figure, 2 tables Replaced due to wrong formating of
author name
Reply to the Comment by B. Andresen
All the comments made by Andresen's comments are replied and are shown not to
be pertinent. The original discussions [ABE S., Europhys. Lett. 90 (2010)
50004] about the absence of nonextensive statistical mechanics with q-entropies
for classical continuous systems are reinforced.Comment: 5 pages. This is Reply to B. Andresen's Comment on the paper entitled
"Essential discreteness in generalized thermostatistics with non-logarithmic
entropy", Europhys. Lett. 90 (2010) 5000
Recommended from our members
Impact of Molecular Architecture and Adsorption Density on Adhesion of Mussel-Inspired Surface Primers with Catechol-Cation Synergy.
Marine mussels secrete proteins rich in residues containing catechols and cationic amines that displace hydration layers and adhere to charged surfaces under water via a cooperative binding effect known as catechol-cation synergy. Mussel-inspired adhesives containing paired catechol and cationic functionalities are a promising class of materials for biomedical applications, but few studies address the molecular adhesion mechanism(s) of these materials. To determine whether intramolecular adjacency of these functionalities is necessary for robust adhesion, a suite of siderophore analog surface primers was synthesized with systematic variations in intramolecular spacing between catechol and cationic functionalities. Adhesion measurements conducted with a surface forces apparatus (SFA) allow adhesive failure to be distinguished from cohesive failure and show that the failure mode depends critically on the siderophore analog adsorption density. The adhesion of these molecules to muscovite mica in an aqueous electrolyte solution demonstrates that direct intramolecular adjacency of catechol and cationic functionalities is not necessary for synergistic binding. However, we show that increasing the catechol-cation spacing by incorporating nonbinding domains results in decreased adhesion, which we attribute to a decrease in the density of catechol functionalities. A mechanism for catechol-cation synergy is proposed based on electrostatically driven adsorption and subsequent binding of catechol functionalities. This work should guide the design of new adhesives for binding to charged surfaces in saline environments
A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices
Improvement of thermoelectric systems in terms of performance and range of
applications relies on progress in materials science and optimization of device
operation. In this chapter, we focuse on optimization by taking into account
the interaction of the system with its environment. For this purpose, we
consider the illustrative case of a thermoelectric generator coupled to two
temperature baths via heat exchangers characterized by a thermal resistance,
and we analyze its working conditions. Our main message is that both electrical
and thermal impedance matching conditions must be met for optimal device
performance. Our analysis is fundamentally based on linear nonequilibrium
thermodynamics using the force-flux formalism. An outlook on mesoscopic systems
is also given.Comment: Chapter 14 in "Thermoelectric Nanomaterials", Editors Kunihito
Koumoto and Takao Mori, Springer Series in Materials Science Volume 182
(2013
Production of antihydrogen at reduced magnetic field for anti-atom trapping
We have demonstrated production of antihydrogen in a 1T solenoidal
magnetic field. This field strength is significantly smaller than that used in
the first generation experiments ATHENA (3T) and ATRAP (5T). The
motivation for using a smaller magnetic field is to facilitate trapping of
antihydrogen atoms in a neutral atom trap surrounding the production region. We
report the results of measurements with the ALPHA (Antihydrogen Laser PHysics
Apparatus) device, which can capture and cool antiprotons at 3T, and then
mix the antiprotons with positrons at 1T. We infer antihydrogen production
from the time structure of antiproton annihilations during mixing, using mixing
with heated positrons as the null experiment, as demonstrated in ATHENA.
Implications for antihydrogen trapping are discussed
The use of indigenous knowledge in development: problems and challenges
The use of indigenous knowledge has been seen by many as an alternative way of promoting development in poor rural communities in many parts of the world. By reviewing much of the recent work on indigenous knowledge, the paper suggests that a number of problems and tensions has resulted in indigenous knowledge not being as useful as hoped for or supposed. These include problems emanating from a focus on the (arte)factual; binary tensions between western science and indigenous knowledge systems; the problem of differentiation and power relations; the romanticization of indigenous knowledge; and the all too frequent decontextualization of indigenous knowledge
Thermodynamic curvature and black holes
I give a relatively broad survey of thermodynamic curvature , one spanning
results in fluids and solids, spin systems, and black hole thermodynamics.
results from the thermodynamic information metric giving thermodynamic
fluctuations. has a unique status in thermodynamics as being a geometric
invariant, the same for any given thermodynamic state. In fluid and solid
systems, the sign of indicates the character of microscopic interactions,
repulsive or attractive. gives the average size of organized mesoscopic
fluctuating structures. The broad generality of thermodynamic principles might
lead one to believe the same for black hole thermodynamics. This paper explores
this issue with a systematic tabulation of results in a number of cases.Comment: 27 pages, 10 figures, 7 tables, 78 references. Talk presented at the
conference Breaking of Supersymmetry and Ultraviolet Divergences in extended
Supergravity, in Frascati, Italy, March 27, 2013. v2 corrects some small
problem
Itinerant ferromagnetism in half-metallic CoS_2
We have investigated electronic and magnetic properties of the pyrite-type
CoS_2 using the linearized muffin-tin orbital (LMTO) band method. We have
obtained the ferromagnetic ground state with nearly half-metallic nature. The
half-metallic stability is studied by using the fixed spin moment method. The
non-negligible orbital magnetic moment of Co 3d electrons is obtained as in the local spin density approximation (LSDA). The calculated
ratio of the orbital to spin angular momenta / = 0.15 is
consistent with experiment. The effect of the Coulomb correlation between Co 3d
electrons is also explored with the LSDA + U method. The Coulomb correlation at
Co sites is not so large, eV, and so CoS_2 is possibly
categorized as an itinerant ferromagnet. It is found that the observed
electronic and magnetic behaviors of CoS_2 can be described better by the LSDA
than by the LSDA + U.Comment: 4 pages, 3 postscript figure
Alpha Antihydrogen Experiment
ALPHA is an experiment at CERN, whose ultimate goal is to perform a precise
test of CPT symmetry with trapped antihydrogen atoms. After reviewing the
motivations, we discuss our recent progress toward the initial goal of stable
trapping of antihydrogen, with some emphasis on particle detection techniques.Comment: Invited talk presented at the Fifth Meeting on CPT and Lorentz
Symmetry, Bloomington, Indiana, June 28-July 2, 201
Antihydrogen and mirror-trapped antiproton discrimination: Discriminating between antihydrogen and mirror-trapped antiprotons in a minimum-B trap
Recently, antihydrogen atoms were trapped at CERN in a magnetic minimum
(minimum-B) trap formed by superconducting octupole and mirror magnet coils.
The trapped antiatoms were detected by rapidly turning off these magnets,
thereby eliminating the magnetic minimum and releasing any antiatoms contained
in the trap. Once released, these antiatoms quickly hit the trap wall,
whereupon the positrons and antiprotons in the antiatoms annihilated. The
antiproton annihilations produce easily detected signals; we used these signals
to prove that we trapped antihydrogen. However, our technique could be
confounded by mirror-trapped antiprotons, which would produce
seemingly-identical annihilation signals upon hitting the trap wall. In this
paper, we discuss possible sources of mirror-trapped antiprotons and show that
antihydrogen and antiprotons can be readily distinguished, often with the aid
of applied electric fields, by analyzing the annihilation locations and times.
We further discuss the general properties of antiproton and antihydrogen
trajectories in this magnetic geometry, and reconstruct the antihydrogen energy
distribution from the measured annihilation time history.Comment: 17 figure
- …
