15,613 research outputs found
Isolating CP-violating \gamma ZZ coupling in e+e- \to \gamma Z with transverse beam polarizations
We revisit the process at the ILC with transverse beam
polarization in the presence of anomalous CP-violating coupling
and coupling . We point out that if
the final-state spins are resolved, then it becomes possible to fingerprint the
anomalous coupling {\rm Re}.90% confidence level limit on {\rm
Re} achievable at ILC with center-of-mass energy of 500 GeV or 800
GeV with realistic initial beam polarization and integrated luminosity is of
the order of few times of when the helicity of is used and
when the helicity of is used. The resulting corrections at
quadratic order to the cross section and its influence on these limits are also
evaluated and are shown to be small. The benefits of such polarization
programmes at the ILC are compared and contrasted for the process at hand. We
also discuss possible methods by which one can isolate events with a definite
helicity for one of the final-state particles.Comment: 13 pages, 9 figures, using RevTex; v2 is a significantly revised
version of v1, and corresponds to the version that has been published in
Physical Review
Quantum Lightning Never Strikes the Same State Twice
Public key quantum money can be seen as a version of the quantum no-cloning
theorem that holds even when the quantum states can be verified by the
adversary. In this work, investigate quantum lightning, a formalization of
"collision-free quantum money" defined by Lutomirski et al. [ICS'10], where
no-cloning holds even when the adversary herself generates the quantum state to
be cloned. We then study quantum money and quantum lightning, showing the
following results:
- We demonstrate the usefulness of quantum lightning by showing several
potential applications, such as generating random strings with a proof of
entropy, to completely decentralized cryptocurrency without a block-chain,
where transactions is instant and local.
- We give win-win results for quantum money/lightning, showing that either
signatures/hash functions/commitment schemes meet very strong recently proposed
notions of security, or they yield quantum money or lightning.
- We construct quantum lightning under the assumed multi-collision resistance
of random degree-2 systems of polynomials.
- We show that instantiating the quantum money scheme of Aaronson and
Christiano [STOC'12] with indistinguishability obfuscation that is secure
against quantum computers yields a secure quantum money schem
Oscillatory Tunnel Splittings in Spin Systems: A Discrete Wentzel-Kramers-Brillouin Approach
Certain spin Hamiltonians that give rise to tunnel splittings that are viewed
in terms of interfering instanton trajectories, are restudied using a discrete
WKB method, that is more elementary, and also yields wavefunctions and
preexponential factors for the splittings. A novel turning point inside the
classically forbidden region is analysed, and a general formula is obtained for
the splittings. The result is appled to the \Fe8 system. A previous result for
the oscillation of the ground state splitting with external magnetic field is
extended to higher levels.Comment: RevTex, one ps figur
Unfolding of event-by-event net-charge distributions in heavy-ion collision
We discuss a method to obtain the true event-by-event net-charge multiplicity
distributions from a corresponding measured distribution which is subjected to
detector effects such as finite particle counting efficiency. The approach is
based on the Bayes method for unfolding of distributions. We are able to
faithfully unfold back the measured distributions to match with their
corresponding true distributions obtained for a widely varying underlying
particle production mechanism, beam energy and collision centrality.
Particularly the mean, variance, skewness, kurtosis, their products and ratios
of net-charge distributions from the event generators are shown to be
successfully unfolded from the measured distributions constructed to mimic a
real experimental distribution. We demonstrate the necessity to account for
detector effects before associating the higher moments of net-charge
distributions with physical quantities or phenomena. The advantage of this
approach being that one need not construct new observable to cancel out
detector effects which loose their ability to be connected to physical
quantities calculable in standard theories
Antiferromagnetism and Superconductivity in UPt_3
The short ranged antiferromagnetism recently seen in UPt_3 is proved
incompatible with two dimensional (2D) order parameter models that take the
antiferromagnetism as a symmetry breaking field. To adjust to the local moment
direction, the order parameter twists over very long length scales as per the
Imry-Ma argument. A variational solution to the Ginzburg-Landau equations is
used to study the nature of the short ranged order. Although there are still
two transitions, the lower one is of first order -- in contradiction to
experiments. It is shown that the latent heat predicted by the 2D models at the
lower transition is too large not to have been seen. A simple periodic model is
numerically studied to show that the lower transition can not be a crossover
either.Comment: To appear in Journal of Physics: Condensed Matter. 9 pages, 2 figure
Magnetic Field Dependence of Macroscopic Quantum Tunneling and Coherence of Ferromagnetic Particle
We calculate the quantum tunneling rate of a ferromagnetic particle of diameter in a magnetic field of arbitrary angle. We consider the
magnetocrystalline anisotropy with the biaxial symmetry and that with the
tetragonal symmetry. Using the spin-coherent-state path integral, we obtain
approximate analytic formulas of the tunneling rates in the small -limit for the magnetic field normal to the easy axis (), for the field opposite to the initial easy axis (),
and for the field at an angle between these two orientations (). In addition, we obtain numerically the tunneling rates for
the biaxial symmetry in the full range of the angle of the magnetic
field (), for the values of \epsilon =0.01 and
0.001.Comment: 25 pages of text (RevTex) and 4 figures (PostScript files), to be
published in Phys. Rev.
Private Outsourcing of Polynomial Evaluation and Matrix Multiplication using Multilinear Maps
{\em Verifiable computation} (VC) allows a computationally weak client to
outsource the evaluation of a function on many inputs to a powerful but
untrusted server. The client invests a large amount of off-line computation and
gives an encoding of its function to the server. The server returns both an
evaluation of the function on the client's input and a proof such that the
client can verify the evaluation using substantially less effort than doing the
evaluation on its own. We consider how to privately outsource computations
using {\em privacy preserving} VC schemes whose executions reveal no
information on the client's input or function to the server. We construct VC
schemes with {\em input privacy} for univariate polynomial evaluation and
matrix multiplication and then extend them such that the {\em function privacy}
is also achieved. Our tool is the recently developed {mutilinear maps}. The
proposed VC schemes can be used in outsourcing {private information retrieval
(PIR)}.Comment: 23 pages, A preliminary version appears in the 12th International
Conference on Cryptology and Network Security (CANS 2013
Macroscopic Quantum Tunneling and Dissipation of Domain Wall in Ferromagnetic Metals
The depinning of a domain wall in ferromagentic metal via macroscopic quantum
tunneling is studied based on the Hubbard model. The dynamics of the
magnetization verctor is shown to be governed by an effective action of
Heisenberg model with a term non-local in time that describes the dissipation
due to the conduction electron. Due to the existence of the Fermi surface there
exists Ohmic dissipation even at zero temperature, which is crucially different
from the case of the insulator. Taking into account the effect of pinning and
the external magnetic field the action is rewritten in terms of a collective
coordinate, the position of the wall, . The tunneling rate for is
calculated by use of the instanton method. It is found that the reduction of
the tunneling rate due to the dissipation is very large for a thin domain wall
with thickness of a few times the lattice spacing, but is negligible for a
thick domain wall. Dissipation due to eddy current is shown to be negligible
for a wall of mesoscopic size.Comment: of pages 26, to appear in "Quantum Tunneling of Magnetization, ed. B.
Barbara and L. Gunther (Kluwer Academic Pub.), Figures available by FAX
(81-48-462-4649
- …
