1,024 research outputs found
Big Entropy Fluctuations in Statistical Equilibrium: The Macroscopic Kinetics
Large entropy fluctuations in an equilibrium steady state of classical
mechanics were studied in extensive numerical experiments on a simple
2--freedom strongly chaotic Hamiltonian model described by the modified Arnold
cat map. The rise and fall of a large separated fluctuation was shown to be
described by the (regular and stable) "macroscopic" kinetics both fast
(ballistic) and slow (diffusive). We abandoned a vague problem of "appropriate"
initial conditions by observing (in a long run)spontaneous birth and death of
arbitrarily big fluctuations for any initial state of our dynamical model.
Statistics of the infinite chain of fluctuations, reminiscent to the Poincar\'e
recurrences, was shown to be Poissonian. A simple empirical relation for the
mean period between the fluctuations (Poincar\'e "cycle") has been found and
confirmed in numerical experiments. A new representation of the entropy via the
variance of only a few trajectories ("particles") is proposed which greatly
facilitates the computation, being at the same time fairly accurate for big
fluctuations. The relation of our results to a long standing debates over
statistical "irreversibility" and the "time arrow" is briefly discussed too.Comment: Latex 2.09, 26 pages, 6 figure
The Information Geometry of the One-Dimensional Potts Model
In various statistical-mechanical models the introduction of a metric onto
the space of parameters (e.g. the temperature variable, , and the
external field variable, , in the case of spin models) gives an alternative
perspective on the phase structure. For the one-dimensional Ising model the
scalar curvature, , of this metric can be calculated explicitly in
the thermodynamic limit and is found to be . This is positive definite and, for
physical fields and temperatures, diverges only at the zero-temperature,
zero-field ``critical point'' of the model.
In this note we calculate for the one-dimensional -state Potts
model, finding an expression of the form , where is the Potts
analogue of . This is no longer positive
definite, but once again it diverges only at the critical point in the space of
real parameters. We remark, however, that a naive analytic continuation to
complex field reveals a further divergence in the Ising and Potts curvatures at
the Lee-Yang edge.Comment: 9 pages + 4 eps figure
Shock Profiles for the Asymmetric Simple Exclusion Process in One Dimension
The asymmetric simple exclusion process (ASEP) on a one-dimensional lattice
is a system of particles which jump at rates and (here ) to
adjacent empty sites on their right and left respectively. The system is
described on suitable macroscopic spatial and temporal scales by the inviscid
Burgers' equation; the latter has shock solutions with a discontinuous jump
from left density to right density , , which
travel with velocity . In the microscopic system we
may track the shock position by introducing a second class particle, which is
attracted to and travels with the shock. In this paper we obtain the time
invariant measure for this shock solution in the ASEP, as seen from such a
particle. The mean density at lattice site , measured from this particle,
approaches at an exponential rate as , with a
characteristic length which becomes independent of when
. For a special value of the
asymmetry, given by , the measure is
Bernoulli, with density on the left and on the right. In the
weakly asymmetric limit, , the microscopic width of the shock
diverges as . The stationary measure is then essentially a
superposition of Bernoulli measures, corresponding to a convolution of a
density profile described by the viscous Burgers equation with a well-defined
distribution for the location of the second class particle.Comment: 34 pages, LaTeX, 2 figures are included in the LaTeX file. Email:
[email protected], [email protected], [email protected]
Vortices in the two-dimensional Simple Exclusion Process
We show that the fluctuations of the partial current in two dimensional
diffusive systems are dominated by vortices leading to a different scaling from
the one predicted by the hydrodynamic large deviation theory. This is supported
by exact computations of the variance of partial current fluctuations for the
symmetric simple exclusion process on general graphs. On a two-dimensional
torus, our exact expressions are compared to the results of numerical
simulations. They confirm the logarithmic dependence on the system size of the
fluctuations of the partialflux. The impact of the vortices on the validity of
the fluctuation relation for partial currents is also discussed.Comment: Revised version to appear in Journal of Statistical Physics. Minor
correction
Finite thermal conductivity in 1D models having zero Lyapunov exponents
Heat conduction in three types of 1D channels are studied. The channels
consist of two parallel walls, right triangles as scattering obstacles, and
noninteracting particles. The triangles are placed along the walls in three
different ways: (a) periodic, (b) disordered in height, and (c) disordered in
position. The Lyapunov exponents in all three models are zero because of the
flatness of triangle sides. It is found numerically that the temperature
gradient can be formed in all three channels, but the Fourier heat law is
observed only in two disordered ones. The results show that there might be no
direct connection between chaos (in the sense of positive Lyapunov exponent)
and the normal thermal conduction.Comment: 4 PRL page
Numerical study of a non-equilibrium interface model
We have carried out extensive computer simulations of one-dimensional models
related to the low noise (solid-on-solid) non-equilibrium interface of a two
dimensional anchored Toom model with unbiased and biased noise. For the
unbiased case the computed fluctuations of the interface in this limit provide
new numerical evidence for the logarithmic correction to the subnormal L^(1/2)
variance which was predicted by the dynamic renormalization group calculations
on the modified Edwards-Wilkinson equation. In the biased case the simulations
are in close quantitative agreement with the predictions of the Collective
Variable Approximation (CVA), which gives the same L^(2/3) behavior of the
variance as the KPZ equation.Comment: 15 pages revtex, 4 Postscript Figure
The grand canonical ABC model: a reflection asymmetric mean field Potts model
We investigate the phase diagram of a three-component system of particles on
a one-dimensional filled lattice, or equivalently of a one-dimensional
three-state Potts model, with reflection asymmetric mean field interactions.
The three types of particles are designated as , , and . The system is
described by a grand canonical ensemble with temperature and chemical
potentials , , and . We find that for
the system undergoes a phase transition from a
uniform density to a continuum of phases at a critical temperature . For other values of the chemical potentials the system
has a unique equilibrium state. As is the case for the canonical ensemble for
this model, the grand canonical ensemble is the stationary measure
satisfying detailed balance for a natural dynamics. We note that , where is the critical temperature for a similar transition in
the canonical ensemble at fixed equal densities .Comment: 24 pages, 3 figure
Classical Coulomb Systems:Screening and Correlations Revisited
From the laws of macroscopic electrostatics of conductors (in particular the
existence of screening) taken for granted, one can deduce universal properties
for the thermal fluctuations in a classical Coulomb system at equilibrium. The
universality is especially apparent in the long-range correlations of the
electrical potentials and fields. The charge fluctuations are derived from the
field fluctuations. This is a convenient way for studying the surface charge
fluctuations on a conductor with boundaries. Explicit results are given for
simple geometries. The potentials and the fields have Gaussian fluctuations,
except for a short-distance cutoff.Comment: 17 pages,TE
Gravity and Nonequilibrium Thermodynamics of Classical Matter
Renewed interest in deriving gravity (more precisely, the Einstein equations)
from thermodynamics considerations [1, 2] is stirred up by a recent proposal
that 'gravity is an entropic force' [3] (see also [4]). Even though I find the
arguments justifying such a claim in this latest proposal rather ad hoc and
simplistic compared to the original one I would unreservedly support the call
to explore deeper the relation between gravity and thermodynamics, this having
the same spirit as my long-held view that general relativity is the
hydrodynamic limit [5, 6] of some underlying theories for the microscopic
structure of spacetime - all these proposals, together with that of [7, 8],
attest to the emergent nature of gravity [9]. In this first paper of two we set
the modest goal of studying the nonequilibrium thermodynamics of classical
matter only, bringing afore some interesting prior results, without invoking
any quantum considerations such as Bekenstein-Hawking entropy, holography or
Unruh effect. This is for the sake of understanding the nonequilibrium nature
of classical gravity which is at the root of many salient features of black
hole physics. One important property of gravitational systems, from
self-gravitating gas to black holes, is their negative heat capacity, which is
the source of many out-of-the ordinary dynamical and thermodynamic features
such as the non-existence in isolated systems of thermodynamically stable
configurations, which actually provides the condition for gravitational
stability. A related property is that, being systems with long range
interaction, they are nonextensive and relax extremely slowly towards
equilibrium. Here we explore how much of the known features of black hole
thermodynamics can be derived from this classical nonequilibrium perspective. A
sequel paper will address gravity and nonequilibrium thermodynamics of quantum
fields [10].Comment: 25 pages essay. Invited Talk at Mariofest, March 2010, Rosario,
Argentina. Festschrift to appear as an issue of IJMP
Rigorous Proof of a Liquid-Vapor Phase Transition in a Continuum Particle System
We consider particles in , interacting via attractive
pair and repulsive four-body potentials of the Kac type. Perturbing about mean
field theory, valid when the interaction range becomes infinite, we prove
rigorously the existence of a liquid-gas phase transition when the interaction
range is finite but long compared to the interparticle spacing.Comment: 11 pages, in ReVTeX, e-mail addresses: [email protected],
[email protected], [email protected]
- …
