697 research outputs found

    Contemporaneous XMM-Newton investigation of a giant X-ray flare and quiescent state from a cool M-class dwarf in the local cavity

    Full text link
    We report the serendipitous detection of a giant X-ray flare from the source 2XMM J043527.2-144301 during an XMM-Newton observation of the high latitude molecular cloud MBM20. The source has not been previously studied at any wavelength. The X-ray flux increases by a factor of more than 52 from quiescent state to peak of flare. A 2MASS counterpart has been identified (2MASS J04352724-1443017), and near-infrared colors reveal a spectral type of M8-M8.5 and a distance of (67\pm 13) pc, placing the source in front of MBM20. Spectral analysis and source luminosity are also consistent with this conclusion. The measured distance makes this object the most distant source (by about a factor of 4) at this spectral type detected in X-rays. The X-ray flare was characterized by peak X-ray luminosity of ~8.2E28 erg s-1 and integrated X-ray energy of ~2.3E32 erg. The flare emission has been characterized with a 2-temperature model with temperatures of ~10 and 46 MK (0.82 and 3.97 keV), and is dominated by the higher temperature component.Comment: 19 pages, 5 figures; Accepted for publication on Ap

    Performance-based financing contributes to the resilience of health services affected by the Liberian Ebola outbreak.

    Get PDF
    Setting: The Liberian counties of Bong, with performance-based financing (PBF) for all 36 public primary-care facilities, and Margibi, with no PBF for its 24 public primary-care facilities. Objective: To compare whether specific maternal and child health indicators changed in the two counties during the pre-Ebola (2013), Ebola (2014) and post-Ebola (2015) disease outbreak periods from July to September each year. Design: This was a cross-sectional study. Results: For pregnant women, the numbers of antenatal visits, intermittent preventive malaria treatments, human immunodeficiency virus (HIV) tests and facility-based births with skilled attendants all fell during the Ebola period, with decreases being significantly more marked in Margibi County. Apart from HIV testing, which remained low in both counties, these indicators increased in the post-Ebola period, with increases significantly more marked in Bong than in Margibi. The number of childhood immunisations decreased significantly in Bong in the Ebola period compared with the pre-Ebola period, but increased to above pre-Ebola levels in the post-Ebola period. There were markedly larger decreases in childhood immunisations in Margibi County during the Ebola period, which remained significantly lower in the post-Ebola period compared with Bong County. Conclusion: In a PBF-supported county, selected maternal and childhood health indicators showed less deterioration during Ebola and better recovery post-Ebola than in a non-PBF-supported county

    2MASS J03105986+1648155AB - A new binary at the L/T transition

    Full text link
    The transition from the L to the T spectral type of brown dwarfs is marked by a very rapid transition phase, remarkable brightening in the J-band and a higher binary frequency. Despite being an active area of inquiry, this transition regime still remains one of the most poorly understood phases of brown dwarf evolution. We resolved the L dwarf 2MASS J03105986+1648155 for the first time into two almost equally bright components straddling the L/T transition. Since such a co-eval system with common age and composition provides crucial information of this special transition phase, we monitored the system over 3 years to derive first orbital parameters and dynamical mass estimates, as well as a spectral type determination. We obtained resolved high angular resolution, near-IR images with HST and the adaptive optics instrument NACO at the VLT including the laser guide star system PARSEC. Based on two epochs of astrometric data we derive a minimum semi-major axis of 5.2 +- 0.8 AU. The assumption of a face-on circular orbit yields an orbital period of 72 +- 4 years and a total system mass of 30-60 Mjup. This places the masses of the individual components of the system at the lower end of the mass regime of brown dwarfs. The achieved photometry allowed a first spectral type determination of L9 +- 1 for each component. In addition, this seems to be only the fifth resolved L/T transition binary with a flux reversal. While ultimate explanations for this effect are still owing, the 2MASS J03105986+1648155 system adds an important benchmark object for improving our understanding of this remarkable evolutionary phase of brown dwarfs. Additionally, the observational results of 2MASS J03105986+1648155 AB derived with the new PARSEC AO system at the VLT show the importance of this technical capability. The updated AO system allows us to significantly extend the sample of brown dwarfs observable with high-resolution from the ground and hence to reveal more of their physical properties.Comment: 6 pages, 2 figures, 3 tables, accepted for publication by A&

    PHOENIX model chromospheres of mid- to late-type M dwarfs

    Full text link
    We present semi-empirical model chromospheres computed with the atmosphere code PHOENIX. The models are designed to fit the observed spectra of five mid- to late-type M dwarfs. Next to hydrogen lines from the Balmer series we used various metal lines, e. g. from Fe {\sc i}, for the comparison between data and models. Our computations show that an NLTE treatment of C, N, O impacts on the hydrogen line formation, while NLTE treatment of less abundant metals such as nickel influences the lines of the considered species itself. For our coolest models we investigated also the influence of dust on the chromospheres and found that dust increases the emission line flux. Moreover we present an (electronically published) emission line list for the spectral range of 3100 to 3900 and 4700 to 6800 \AA for a set of 21 M dwarfs and brown dwarfs. The line list includes the detection of the Na {\sc i} D lines in emission for a L3 dwarf.Comment: 14 pages, 18 figure

    Benchmark low-mass objects in Moving Groups

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License 2.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In order to compile a sample of ultracool dwarfs that will serve as benchmarks for testing theoretical formation and evolutionary models, we selected low-mass cool (>M7) objects that are potentially members of five known young Moving Groups in the solar neighbourhood. We have studied the kinematics of the sample, finding that 49 targets belong to the young disk area, from which 36 are kinematic member of one of the five moving groups under study. Some of the identified low-mass members have been spectroscopically characterised (T-eff, log g) and confirmed as young members through a detailed study of age indicators

    CCD Parallaxes for 309 Late-type Dwarfs and Subdwarfs

    Full text link
    New, updated, and/or revised CCD parallaxes determined with the Strand Astrometric Reflector at the Naval Observatory Flagstaff Station (NOFS) are presented. Included are results for 309 late-type dwarf and subdwarf stars observed over the 30+ years that the program operated. For 124 of the stars, parallax determinations from other investigators have already appeared in the literature and we compare the different results. Also included here is new or updated VIVI photometry on the Johnson-Kron-Cousins system for all but a few of the faintest targets. Together with 2MASS JHKsJHK_s near-infrared photometry, a sample of absolute magnitude versus color and color versus color diagrams are constructed. Since large proper motion was a prime criterion for targeting the stars, the majority turn out to be either M-type subdwarfs or late M-type dwarfs. The sample also includes 50 dwarf or subdwarf L-type stars, and four T dwarfs. Possible halo subdwarfs are identified in the sample based on tangential velocity, subluminosity, and spectral type. Residuals from the solutions for parallax and proper motion for several stars show evidence of astrometric perturbations.Comment: Machine-readable tables are available as supplemental material (click on "Other Formats" to access

    Epsilon Indi Ba/Bb: the nearest binary brown dwarf

    Full text link
    We have carried out high angular resolution near-infrared imaging and low-resolution (R~1000) spectroscopy of the nearest known brown dwarf, Eps Indi B, using the ESO VLT NAOS/CONICA adaptive optics system. We find it to be a close binary (as also noted by Volk et al. 2003) with an angular separation of 0.732 arcsec, corresponding to 2.65AU at the 3.626pc distance of the Eps Indi system. In our discovery paper (Scholz et al. 2003), we concluded that Eps Indi B was a ~50Mjup T2.5 dwarf: our revised finding is that the two system components (Eps Indi Ba and Eps Indi Bb) have spectral types of T1 and T6, respectively, and estimated masses of 47 and 28Mjup, respectively, assuming an age of 1.3Gyr. Errors in the masses are +/-10 and +/-7Mjup, respectively, dominated by the uncertainty in the age determination (0.8-2Gyr range). This uniquely well-characterised T dwarf binary system should prove important in the study of low-mass, cool brown dwarfs. The two components are bright and relatively well-resolved: Eps Indi B is the only T dwarf binary in which spectra have been obtained for both components. They have a well-established distance and age. Finally, their orbital motion can be measured on a fairly short timescale (nominal orbital period 15 yrs), permitting an accurate determination of the true total system mass, helping to calibrate brown dwarf evolutionary models.Comment: Accepted for publication by Astronomy & Astrophysics main journal. This replacement version includes minor changes made following comments by the referee, along with a reworking of the photometric data and derived quantities using 2MASS catalogue photometry as the basis, with only a minor impact on the final result

    New Models for a Triaxial Milky Way Spheroid and Effect on the Microlensing Optical Depth to the Large Magellanic Cloud

    Full text link
    We obtain models for a triaxial Milky Way spheroid based on data by Newberg and Yanny. The best fits to the data occur for a spheroid center that is shifted by 3kpc from the Galactic Center. We investigate effects of the triaxiality on the microlensing optical depth to the Large Magellanic Cloud (LMC). The optical depth can be used to ascertain the number of Massive Compact Halo Objects (MACHOs); a larger spheroid contribution would imply fewer Halo MACHOs. On the one hand, the triaxiality gives rise to more spheroid mass along the line of sight between us and the LMC and thus a larger optical depth. However, shifting the spheroid center leads to an effect that goes in the other direction: the best fit to the spheroid center is_away_ from the line of sight to the LMC. As a consequence, these two effects tend to cancel so that the change in optical depth due to the Newberg/Yanny triaxial halo is at most 50%. After subtracting the spheroid contribution in the four models we consider, the MACHO contribution (central value) to the mass of the Galactic Halo varies from \~(8-20)% if all excess lensing events observed by the MACHO collaboration are assumed to be due to MACHOs. Here the maximum is due to the original MACHO collaboration results and the minimum is consistent with 0% at the 1 sigma error level in the data.Comment: 26 pages, 2 figures. v2: minor revisions. v3: expanded discussion of the local spheroid density and minor revisions to match version published in Journal of Cosmology and Astroparticle Physics (JCAP
    corecore